
Programming Gambas from Zip

Contents

Programming projects are in Red.

Programming and its Grammar

Objects, Subs and Events

Names and Memories

Properties and Kinds of Things (Classes)

Comments

Computers Can Do Three Things

Memory Functions and Subs Preventing Errors

Calculate Speed from Distance and Time

Conditional Execution If...Then...Else Select...Case...

Game of HiLo Key class and checking the keyboard

Grading Student Marks Colouring Alternate Rows, colours, adding a Quit menu

Repetition For...Next… Repeat...Until While...Wend

Moving Button Animation

TableView that adds up to 5 numbers

TableView that adds numbers in a grid

Arrays, Lists, Sorting and Shuffling

Making a Table of Doubles, Squares and Square Roots Format a number

Game of Moo Assignment Operators like += and &=

Writing on the Hard Drive 1

Saving and Opening Text Files

Game of Animal Showing and Hiding Objects

Expandable Forms (Automatic Arranging of Objects)

A Spreadsheet to Average Student Marks

Contextual Menus

Character Codes and Keeping Time

Game of Concentration

Radio Buttons and Groups, Parents and Children

Writing on the Hard Drive 2

Saving Settings “Me”, Saving a colour, checkbox and tableview
Coloured panels
The If(…, …, …) function

Modules and Classes

Locate a Name in a List by Typi ng

Properties, Methods, Events

Static Classes

Making a SearchBox class with a New Event Based on a TableView

SQLite Databases

Tables, Primary Keys, Loading the Database Component of Gambas

Databases Can Do Four Things: Display(Access), Add, Delete and Modify Records

Make a database with a single table and fill it with random numbers

SQL — Structured Query Language

Begin, Commit and Rollback

Select, Insert Into, Delete From, Update

2

* for All Fields

WHERE clause for some records only

ORDER BY clause to set the sort order

A Cash Spending Application

Printing

Printer Object

Print Some Plain Text

HTML

P rint Some Rich Text

Text and Images

Print an image

Print a Class List

Print a calendar for the month

Tray Item: Notebook

Appendices

Did You Know? — from Gambas ONE

Functions Reference

Constants

Operators

Data Types and Conversions

Formatting

Operator Precedence

Afterword

3

Programming Gambas from Zip

Programming

Programming is making applications. It is also called ‘coding’ because the instructions are written
in ‘code’.

There are many programming languages. Ours is Gambas. (Gambas Almost Means BASic). BASIC
(Beginner's All-purpose Symbolic Instruction Code) first appeared on 1 May, 1964 (55 years ago in
2019, as I write). Everyone loved BASIC. It made programming possible for us ordinary mugs.
Benoît Minisini designed and wrote Gambas and gives it away free. He lives in Paris, France and is
47 (in 2019). He said, “Programming is one of my passions since I was twelve” and “I am using
many other languages, but I never forgot that I have learned and done a lot with BASIC.”

commons.wikimedia.org/wiki/File:Benoît-Minisini.png

Benoît Minisini, 2005—one really great guy. We stand in awe.

This is a piece of code:

Public Sub Form_Open()
 gridview1.Rows.count = 5
 gridview1.Columns.count = 1
 For i As Integer = 0 To 4
 gridview1[i, 0].text = Choose(i + 1, "Red", "Yellow", "Green", "Blue",
"Gold")
 Next
 gridview1.Columns[0].text = "Colour"
End

The language is Gambas. This is a Sub (also called Method, Procedure or Subroutine. If it gave you
some sort of answer or result it could be called a Function).

4

On the left is the design. It is a form. Think of it as a Window. On the right is the application in
action. That is what you see when you run the program.

Starting an application is called running it. The program runs. Every statement in the program is
executed. The Form_open sub (above) fills the gridview object.

Part 1

Open Gambas.

Double-click FMain in the list on the left. The form opens.

Look for a GridView among the objects at the bottom right. Drag it onto the form. Adjust its size by
dragging the handles (small squares on its edge). Adjust the form size too.

Right-click the form (NOT the gridview) > Event menu item > Open.

Type or paste in the code for the open event (as above).

Press F5 to run your program.

Part 2

With the same program with the gridview that you just tried, drag a Label onto the form.

5

Right-click the gridview > Event > Enter, and type this code:

Public Sub gridview1_Enter()
 Label1.text = "Hello"
End

Right-click the gridview > Event > Leave, and type this code:

Public Sub gridview1_Leave()
 Label1.text = ""
End

Run the program with F5. Move the mouse in and out of the gridview.

Label1.text = "Hello" is a way of saying “Put the word Hello into the text property of Label1.”

Break Complex Things into Parts

This is the most important idea about programming. The only way to write a good program is to
“divide and conquer”. Start with the Big Idea, then divide it into parts. Piece by piece, write the
program. This is called top-down development. The opposite is useful, too: bottom-up development.
Write a simple program and keep adding bits and pieces to it until it does all the things you want it
to.

The first programs were simple creatures that did but one thing. Then came menus, where you could
select one of several things by pressing a key. For example, “Press 1 to get your account balance.
Press 2 to recharge. Press 0 to speak to an operator.” Nowadays applications do many things. To
choose, you have a menu bar at the top, menus that drop down, and menu items that you click on in
each menu. You can click a button. Buttons can be solitary, or friendly with each other and gather
together in a toolbar. You can pop up a menu anywhere. You can type shortcut keys to get things to

6

happen. There can be several windows. Within windows (forms) there can be many pages with or
without an index tab at the top of each.

Buttons can be on the screen, or the physical keys on your keyboard. The standard keyboard has
101 keys, but they can all be given a second function if you hold down CTRL-, the control key,
while you type them. That gives you 202. Not enough? Holding down SHIFT-, the shift key, makes
all the keys different again, giving you 303 buttons. There is ALT- (alternative) that makes all the
buttons different yet again: 404 of them. The modifier keys held down in combination give you
more sets of keys, like more keyboards: SHIFT+CTRL, CTRL+ALT and SHIFT-CTRL-ALT. Now I have
lost count. Fortunately for us, no application uses them all.

The key to good programming is to get things into order. Be neat and tidy. Arrange things. Things
you do all the time should have their buttons visible; things you do not so often could be hidden
away in a popup menu.

Reduce complicated tasks to a series of simple steps. Write lots of little Subs, not just one big sub.
Write “master subs” that call on lesser subs to do little jobs. The biggest master of them all is the
user. You use the program to do this, then that, then something else. The program says, “At your
service!” and calls on different subs you have written to do what you want. In the meantime, it waits
and listens for your command, checking the keyboard and the mouse, or, if it is not waiting for you,
it keeps busy doing something you set it to work on.

Objects, Subs and Events

The program above has two things (called Objects): a form, and a gridview.

Things that happen are called Events.

There is an event that “fires” or “is triggered” when a form opens. It is called (no surprise) the
OPEN event. If you want something to happen when the form opens, write a sub called Form_Open.
The instructions there will be carried out when the OPEN event fires. The form opens when the
application starts up.

You have to think of two things: what will happen and when it will happen. The “what” is the list of
instructions in Subs. The “when” is a case of choosing which events to handle.

Names and Putting Something into Something

Everything has to have a name. People have names. Forms have names. Buttons have names. You
get to choose, using letters and numbers, always starting with a letter, and not having any spaces.

The main form is called FMain. It’s open event is Form_Open.

I like the convention of calling it FMain. The “F” says, “Form”. If I had a form that listed people’s
addresses, I would call it FAddress. When it opens—perhaps at the click of a button—its open event
would look for a sub called FAddress_Open.

7

Right-click an object, choose EVENT, and click on the event you want to write some programming
for:

Right-click the form > Event > Open > write code for the Open event.

There will be a big confusing list of events. Don’t be fazed: only a few are used often. A big part of
learning the language is getting used to the events that are most useful to certain objects. Buttons,
for example, like to be Clicked; you don’t use the other events very often. Possibly, entering a
button might put some help text in a line at the bottom of the window, and leaving it will clear the
message, but not often. I have not seen a double-click handler for a button yet: who double-clicks
buttons? You will get used to the favourite events that objects have.

In the program you have written, type or paste this sub. Every time you roll the mouse into the
gridview, a message saying “Hello” appears. When you have tried it and it has annoyed you
enough, delete the three lines of code.

Public Sub Gridview1_Enter()
 Message("You have entered the gridview ... evil laugh...")
End

The Activate event happens when you double-click. Enter these lines and double-click any of the
lines.

Public Sub gridview1_Activate()
 Message("You double-clicked row " & gridview1.row)
End

gridview1.row is the row you double-clicked on. It is set when you click or double-click. The “&”
sign (ampersand) joins two strings of text. (Strings are text … characters one after the other.)

This next code will do something when you click on gridview1:

8

Public Sub gridview1_Click()
 Label1.text = "You clicked on row " & gridview1.Row & ", " &
gridview1[gridview1.row, 0].text
End

There are two strings. (1) "You clicked on row " and (2) ", " . Strings have double quotes around
them.

What is on the right of the equals goes into what is on the left.

You don’t put something into Label1; you put it into the text of Label1.

Usually languages won’t allow this: Label1.text = 345. It must be Label1.text = "345" or
Label1.text=Str(345), but Gambas doesn’t mind. Gridview1.Row refers to the row number you
clicked on. Numbers normally go into things that store numbers, and strings go into things that store
strings, but Gambas converts it automatically.

gridview1[gridview1.row, 0].text looks complicated, but let’s break it down. From the left, it is
something to do with gridview1. From the right, it is the text in something. The part in square
brackets is two numbers with a comma in between: the row you clicked on and zero. In the example
above, it is [2,0]. Row two, column zero.

Gridview rows and Gridview columns start their numbering at zero.

Properties and Kinds of Things

In this part the examples are not Gambas, but they are written in Gambas style.

Behold John and Joan:

9

Parts are referred to like John.arm, Joan.head

Sometimes parts have smaller parts, such as John.hand.finger

Parts have properties, like Joan.height

Some properties are integers (whole numbers), like Joan.Toes.Count

Some properties are floats (numbers with decimal fractions) like John.height . This is not the same
as John.Leg.Height .

Some properties are booleans (true/false, yes/no) like Hat On or Hat Off. We could say Persons, as
a class, have a property called HatOn, “John.HatOn” or “Joan.HatOn”. (It is true or false.)

They belong to the class called “person”. John is a person; Joan is a person. Persons all have a
height, weight, hat-on/hat-off, and other properties.

Persons also have various abilities. The “person” class can sing and wave and smile. Their legs can
walk. For example, John.sing(“Baby Face”) . Sometimes John will need to know which version, for
example, John.sing(“Baby Face”, “Louis Armstrong”) or Joan.wave(“Hello”, “John”, 8). This means
“Joan! Give a hello wave to John, vigorously!”

There will also be events they can respond to, like a push, or when they hear someone singing.
These events are John_push() and Joan_push(), John_HearsSinging() and Joan_HearsSinging()

Let’s write a response to these events in the style of Gambas.

John might get annoyed when the Push event takes place:

10

Public Sub John_push()
 John.Turn(180)
 Message.shout(“Hey! Quit shoving!”)
End

Joan might join in the song that she hears and start singing it too:

Public Sub Joan_HearsSinging(“Ave Maria”)
 Joan.HatOn = False
 Joan.sing(“Ave Maria”)
End

Boolean properties are yes/no, true/false, haton/hatoff things. Putting false into the HatOn property
means taking her hat off before she sings.

John has the ability to turn around, but we must say how much to turn. He turns 180°, doing an
about-face so he is facing the person who pushed him.

Mary can sing, but we must say which song to sing. It is the same one that she is hearing. We say
that the HearsSinging event is passed the name of the song, “Ave Maria”. That song title is passed
to Joan’s singing ability, which is referred to as Joan.sing . The bits of information you pass on so
that the action can be done are called parameters. Some methods require more than one parameter,
and they can be numbers (integers, floats…) or strings (text like “Jingle Bells” or “Fred” or “Quit
pushing, will you?!”) or booleans (HatOn/HatOff, Complain/Don’tComplain True/False kinds of
things), or other objects or, well, anything.

Let’s define a sub and this time we’ll put some repetition in it. There are two kinds of repetition—
one where you repeat a definite number of times, and another where you have to check something
to see if it is time to stop. (And the latter comes in two kinds, where you check if it is time to stop
before you start or after you have done it—pretested loops or post-tested loops.) Here are the
definite and indefinite types:

Five times:

Public Sub DoExercises()
 For i as integer = 1 to 5
 Hop()
 Next
End

Until tired:

Public Sub DoExercises()
 Do Until Tired()
 Hop()
 Loop
End

11

While not tired:

Public Sub DoExercises()
 While Not Tired()
 Hop()
 Wend
End

In the first, there will be 5 hops and that is all. “i” is an integer that is created in the line For i as
integer = 1 to 5 and it counts from 1 to 5. It is made one bigger by the word NEXT. The repeated
section is called a loop.

Tired() is something that has to be worked out. The procedure for working it out will be in another
sub somewhere. At the end of it there will be an answer: are you tired or not? Yes or no, true or
false. That will be returned as a final value. Tired() looks like a single thing, the value returned by a
function. Functions work something out and give you an answer.

“Hop” might need further explanation if “hop” is not already known. You can use any made-up
words you like, provided you explain them in terms that are built-in and already known to Gambas.
Here is a sub that explains the Hop procedure:

Public Sub Hop()
 GoUp()
 GoDown()
End

The beauty of breaking procedures down into simpler procedures is that the program explains itself.
You are giving names to the complicated tasks without getting lost in the fine detail of how they are
done. Not only can you use words that make sense to someone else reading your program but you
can track down errors more easily. You can test each part more easily. You can also modify your
program more easily. DoExercises() can be left as it is, but you can change the definition of hopping
with

Public Sub Hop()
 GoUp()
 ShoutAndPunchTheAir()
 GoDown()
End

or

Public Sub Hop()
 GoUp(LeftFoot)
 GoDown()
 GoUp(RightFoot)
 GoDown()
End

12

Comments

Anything after a single apostrophe is a note to yourself. Gambas disregards it. Put in comments to
remind yourself of what you are doing. It can also explain your thinking to someone else who might
need to read your program. Here is some more pseudocode:

Public Sub Joan_HearsSinging(“Ave Maria”) 'you must say what the song is
 Joan.HatOn = False 'remove your hat
 'now the fun starts
 Joan.sing(“Ave Maria”) 'sing the same song
End

What Computers Can Do

Now we are back into Gambas. That is enough pseudocode.

There are three things computers can do: memory, repetition and conditional execution. Repetition
is doing things over and over like working through millions of numbers or thousands of records.
Conditional execution means making choices.

Memory

Calculators sometimes have M+ and MR keys. Whatever number is showing goes into a memory
when you press M+. Whenever you need to use that number again, to save typing it, press the
Memory Recall button, MR. The memory is like a note you have made to yourself to remember this
number.

Computers have as many memories as you like and you give them names. Putting something in a
memory is as easy as typing Age = 23. What is on the right is put into the memory on the left. To see
what is in the memory called Age, print it or put it in some place where you can see it. Label1.text =
"Your age is " & Age .

Before you can use some name as a memory you must tell Gambas what kind of thing will be
stored in it. This is what the DIM statement does. You declare it before it is used. For example, Dim
Age As Integer or Dim FirstName as String . Memories are called Variables or Properties if they are
associated with something.

You can declare a memory and put something into it in one line:

Dim FirstName as String = "Michael"

You can use memories to calculate something, and put the answer into another memory:

Dim Speed as float = 45
Dim Time as float = 1.5
Dim Distance as Float = Speed * Time
Label1.text = Format(Distance, "##0.##") & "km/hr"

13

To DIMension things you need to know what types are allowed. Here is a list of data types:

Name Description Example De-
fault

Boolean True or False 1 = 2 False

Integer A whole number from -2147483648 ... +2147483647 123 0

Float A number with a decimal part, like 2.34 2.34 0.0

Date Date and time, each stored in an integer . Null

String Letters and digits and symbols strung together. Text. "ABC 12%" Null

Variant Any datatype. It has to be converted to some type before it can be used. Null

Calculate Speed from Distance and Time

There are six labels, three textboxes and one button. The names for the labels do not matter, but the
textboxes and the button are named as shown. The program is:

Public Sub bCalculate_Click()
 tbSpeed.text = Val(tbKilometres.text) / Val(tbHours.text)
End

“Val” takes a string and converts it to a number. It means “the value of”.

It could be written this way, using variables, but it would take more lines:

Public Sub bCalculate_Click()
 Dim d As Float = Val(tbKilometres.text)
 Dim t As Float = Val(tbHours.text)
 Dim s As Float = d / t

14

 tbSpeed.text = s
End

If you want to give better names to the variables,

Public Sub bCalculate_Click()
 Dim distance, time, speed As Float
 distance = Val(tbKilometres.text)
 time = Val(tbHours.text)
 speed = distance / time
 tbSpeed.text = speed
End

And you could write a function that takes distance and time and returns the speed. It is good to
teach the computer things. Here we have taught the computer that Speed(5,2) is 2.5. Our calculate
button uses it. We could have a menu item that also uses it.

Public Sub bCalculate_Click()
 tbSpeed.text = Speed(Val(tbKilometres.text), Val(tbHours.text))
End

Public Sub Speed(d As Float, t As Float) As Float
 Return d / t
End

Now let’s trick our program. Don’t put in anything for the distance or time. Just click the Calculate
button. The poor thing cannot cope. We get this error:

Problems come at the extremes. In repeated sections, they are most likely to occur in the first or the
last repetition. Here, there is an extreme input: nothing, zip, nilch. Gambas cannot get the Val() of
that.

tbKilometres.text was Null. We should anticipate that someone might click the button without
putting in any numbers. Here are two ways handle the situation, and the second one is better
because ‘prevention is better than cure’:

1. Finish early (Return from the sub early)

Public Sub bCalculate_Click()
 Dim d, t, s As Float
 If IsNull(Val(tbKilometres.text)) Then
 Message("Hey, you there! Give me a NUMBER for the kilometres.")
 Return

15

 Else
 d = Val(tbKilometres.text)
 Endif
 If IsNull(Val(tbHours.text)) Then
 Message("A number would be nice for the hours. Please try again.")
 Return
 Else
 t = Val(tbHours.text)
 Endif
 s = d / t
 tbSpeed.text = s 'To round to 2 decimal places, change s to format(s,"#.00")
End

2. Only enable the button if the calculation can proceed. Set the Enabled property of the button to
False to begin with. We need to handle a few events.

Public Sub bCalculate_Click()
 tbSpeed.text = Val(tbKilometres.text) / Val(tbHours.text)
 Fmain.SetFocus 'otherwise the button stays highlighted; focus the form
End

Public Sub tbKilometres_Change()
 CheckBothAreNumbers
End

Public Sub tbHours_Change()
 CheckBothAreNumbers
End

Public Sub CheckBothAreNumbers()
 bCalculate.Enabled = Not IsNull(Val(tbKilometres.text)) And Not
IsNull(Val(tbHours.text))
End

bCalculate.Enabled = means ‘set the enabled property of the button to...’

Not IsNull(Val(tbKilometres.text)) means Yes if the text in the kilometres textbox can be converted to
a number.

Every textbox has a Change event. It fires when the text in the box changes. Every time you press a
key, that Change event is going to see if it’s time to enable the bCalculate button.

And because I cannot leave well enough alone, I apologise for introducing the “Group” property.
You may need coffee. Or skip this section. Do you notice that the two textboxes have to each handle
the Change event the same way? tbKilometres and tbHours both check for numbers and enable or
disable the button accordingly. Wouldn’t it be nice if both textboxes were like just one textbox?
Gambas can do this. Put them in a Group. Then this single group will have a Change event, and you
can handle it just once. Group is a property. Find the Group property for each and set it to
“InputBox”. Now your code becomes the simplest yet:

Public Sub bCalculate_Click()

16

 tbSpeed.text = Val(tbKilometres.text) / Val(tbHours.text)
 Fmain.SetFocus 'otherwise the button stays highlighted; focus the form
End

Public Sub InputBox_Change()
 CheckBothAreNumbers
End

Public Sub CheckBothAreNumbers()
 bCalculate.Enabled = Not IsNull(Val(tbKilometres.text)) And Not
IsNull(Val(tbHours.text))
End

It is as if the two textboxes have become inputboxes (a name you just invented), with all the same
events. One set of event handlers for several objects.

It’s robust (resistant to users who insist on not using your application the way you expect them to).
It’s concise (3 event handlers, 4 lines of code). It works. One thing remains: a button that says
QUIT with one thing in its Click event: the command Quit. Over to you.

If..Then..Else — Game of HiLo

This game is easy to play: one person thinks of a number between 1 and 100. You try to work out
the number in as few guesses as possible. Each time you will be told “Too High!” or “Too Low!”.

There are three labels and one textbox. The large label where it says “Guess...” is named
labMyReply. The textbox is named tbGuess. The small label in the bottom left corner is named
labCount.

Public MyNumber As Integer

Public Sub Form_Open()
 MyNumber = Rand(1, 100)
End

17

Public Sub tbGuess_KeyPress()
 If Key.Code = Key.Enter Or Key.Code = Key.Return Then GiveMessage
End

Public Sub GiveMessage()

 If IsNull(tbGuess.text) Then 'no guess at all
 labMyReply.text = "Guess..."
 Return
 Endif

 Dim YourGuess As Integer = Val(tbGuess.text)

 If MyNumber = YourGuess Then
 labMyReply.Text = "Right! " & MyNumber
 MyNumber = Rand(1, 100)
 tbGuess.text = ""
 FMain.Background = Color.Green
 labCount.text = "0"
 Return
 Endif

 If YourGuess > MyNumber Then labMyReply.Text = "Too High!" Else
labMyReply.Text = "Too Low!"
 tbGuess.text = ""
 FMain.Background = Color.Pink
 labCount.text = Val(labCount.text) + 1

End

The program checks the guess when ENTER or RETURN is pressed in the textbox. The Key class
is static, meaning it is always there—you do not have to declare or create it. If you ever need to
check for some key, such as SHIFT-C, being pressed, you would write:

 If Key.SHIFT And Key.Text = "C" Then
 GiveMessage
 Stop Event
 Endif

The Stop Event line is there to prevent capital-C being printed in the textbox, which would normally
happen when you type Shift-C in a textbox.

Public MyNumber As Integer means we want a public property called MyNumber. You could say
Private instead of public. Private properties are accessible only in the code belonging to that form.
If we had other forms (i.e. windows) they cannot see another form’s private property. Declaring a
property as private is a way of telling you, the programmer, that you have only used this property
here, in this form’s code that you are looking at. Also, another form could have its own property and
use the same name.

In the Event Form_Open() event handler, Rand(1,100) is a built-in function that represents a random
number between 1 and 100.

18

In the Event tbGuess_KeyPress() event handler, the key just typed is compared with the Enter and
Return keys. If it was either one, the guess is checked. Every key has a number. Enter is 16777221
and Return is 16777220. We do not need to know the numbers, because they are stored in Key.Enter
and Key.Return. These are constants in the Key class. Because the Key class is static we do not have
to make a new example of it: it is always there and we can refer to it by its name. We never need
another one of them. There is only ever one keyboard. We never have to say “the Key belonging to
the ACER laptop keyboard” or “the Key that was typed on the HP laptop keyboard”.

If IsNull(tbGuess.text) Then … End avoids the nasty situation of a person pressing Enter without
having typed in any number at all.

Dim YourGuess As Integer = Val(tbGuess.text) puts the numeric value of what was typed into a
variable called YourGuess. This is an integer. If a person typed 34.56, only 34 would be put into
YourGuess.

If MyNumber = YourGuess Then… checks to see if YourGuess matches MyNumber. If it is, show the
“Right!” message and make the background colour of the form green. Choose another random
number ready for the next game and then Return, because nothing more needs to be done.

If YourGuess > MyNumber Then labMyReply.Text = "Too High!" Else labMyReply.Text = "Too Low!"
puts the appropriate message into the labMyReply textbox. This is an If...Then...Else statement all
on one line. In either case, continue on to make the background pink.

From the Gambas help page, these are the properties and constants for the Key class:

The constants return integer numbers. The properties are what was typed. So you could check if the
user typed the PgDown key with if Key.Code = Key.PgDown then… Negotiating and reading the help
pages is a skill in itself.

Select … Case … — Many Choices — Grading Student Marks

Let’s type numbers into a TableView and make it work out whether each student earns an A, B, C,
D, E or F grade. We’ll need two columns. The first will be for the marks, the second for the grades.

19

We’ll skip having a column for student names for now. And we’ll avoid using many IF...THEN...
statements in favour of its big brother, SELECT...CASE…

The TableView is named tvMarks. The textbox is named tbRows. Double-click an empty part of the
form and enter the code for the form’s open event:

Public Sub Form_Open()
 tvMarks.Columns.count = 2
End

Double-click the textbox and enter:

Public Sub tbRows_KeyPress()
 If Key.Code = Key.Return Or Key.Code = Key.Enter Then tvMarks.Rows.Count =
Val(tbRows.Text)
End

Right-click the TableView > Event > Click, then right-click > Event > Save, and enter these:

Public Sub tvMarks_Click()
 If tvMarks.Column = 0 Then tvMarks.Edit
End

Public Sub tvMarks_Save(Row As Integer, Column As Integer, Value As String)
 tvMarks[Row, Column].Text = Value
 Dim x As Float = Val(Value)
 Select Case x
 Case 90 To 100
 tvMarks[Row, 1].Text = "A"
 Case 80 To 89
 tvMarks[Row, 1].Text = "B"
 Case 70 To 79
 tvMarks[Row, 1].Text = "C"
 Case 60 To 69

20

 tvMarks[Row, 1].Text = "D"
 Case 50 To 59
 tvMarks[Row, 1].Text = "E"
 Case Else
 tvMarks[Row, 1].Text = "F"
 End Select
End

The tvMarks_Click() handler lets you type in the cell if the column is 0. If you click in column 1 you
will not be able to type: nothing happens when you click.

You might think that whatever you type in a cell should show up. It doesn’t. It raises the Save event.
You might want something else to appear other than what was typed. During the Save event,
actually put the text that was typed into the text property of the cell:

 tvMarks[Row, Column].Text = Value

The Save event comes with three parameters that you can use freely in the course of the event
handler: tvMarks_Save(Row As Integer, Column As Integer, Value As String) . This line of code puts
the value that was typed into the text of the cell. Which cell? tvMarks[row, column]. That is the cell.

You refer to a cell by using square brackets: tvMarks[1,0] refers to row 1, column 0. (Remember
rows and columns are numbered starting with zero.) tvMarks.Rows[2] is row 2.
tvMarks.Columns[1] is the whole of column 1.

A Nice Addition — Colour alternate rows

The TableView_Data() event is very useful. It is raised (happens) every time a cell needs to be
redrawn on the screen. (It is useful to remember it deals with cells, not rows or columns or the
whole table.) Right-click the tableView, then > Event > Data and enter this:

Public Sub tvMarks_Data(Row As Integer, Column As Integer)
 If Row Mod 2 = 0 Then tvMarks[Row, Column].Background = &F0F0FF
End

This gives alternate rows a light blue colour (very pretty). To explain, cells have a property called
“background”. It is a colour. Colours can be described in several ways: using a straight number is
the simplest. The number is &F0F0FF.

21

Numbering Colours

A computer screen is full of little lights that light up Red, Green and Blue.

What sort of number is &F0F0FF? The “&” sign means the number is written in hexadecimal.
Normally we use the decimal system, which is Base 10. You count from zero to nine and the digit
goes back to zero and you increase the digit to its left by one. Here is normal counting in Base 10:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,16… Using hexadecimal you have 16 digits, not ten.
Here is counting in Base 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21… The eleventh number in the decimal system is written 11.
The eleventh number in the hexadecimal system is written B.

Now, what colour is &F0F0FF? The hexadecimal number F0F0FF is actually three 2-digit numbers:
F0, F0, FF. The first number is how much Red. The second number is how much Green. The third
number is how much Blue. That is RGB, red-green-blue. Each goes from 00 to FF. 00 in the first
place would mean “No red at all”. FF in the first place would mean “Maximum red!”. Pure red
would be &FF0000. Pure green would be &00FF00, and pure blue is &0000FF. So pure black is
&000000. Pure white is &FFFFFF, which is all the colours as bright as you can make them.

This colour is grey: &F0F0F0. The red, green and blue lights are mostly on, but not fully bright. F0 is
not as bright as FF. To get a darker grey, lower the numbers but lower them all the same, e.g.,
C0C0C0. Darker again, B0B0B0. The tiniest bit darker than that is AFAFAF, because after AF comes
B0. The point is, when they are all the same you get shades of grey. So look at F0F0FF. It is a very
light grey (F0F0F0), but the last number, the one for Blue, is a bit brighter. It is FF. So the colour is a
very light grey with the Blue just a bit brighter. That is, it’s very light blue. It is all about the mix of
three colours, red, green and blue. This is pale pink: FFD0D0. This is pale green: D0FFD0. This is
pale yellow: FFFFD0. (Red=brightest, Green=brightest, Blue=a little less bright). This is full yellow:
FFFF00.

It is all about the tiny little LED lights on your screen. There are millions of them, but they are
grouped in threes—a red, a green and a blue. You are control the brightness of each little light. The
brightness goes from 00 to FF, or in decimal, from 0 to 255. (FF=255). One red, one green and one
blue act like one coloured dot. It is called a pixel. A typical laptop screen has a resolution of 1366 x
768 pixels. That is 1,049,088 pixels. Each has three little LED lights, making 3,147,264 lights on
your screen, each one with 256 shades of brightness. Amazing!

22

Adding a Quit Menu

Adding a File menu

Click “+Insert”. Name this menu MenuFile and caption it File. The caption is what the user sees.
The name is how we refer to the menu in our programming.

Click “+Insert” again. We want it to be part of the File menu, so click the push-right button on the
toolbar. While you are at it, give the menu CTRL-Q for a shortcut.

Adding a Quit menuitem to the File menu, with shortcut CTRL-Q

Now write a handler for when the user clicks on MenuQuit. (To do this, look for the File menu in
the form and click it, then click the menuitem Quit.)

Public Sub MenuQuit_Click()
 Quit
End

Repetition

Repeated sections of code are called loops. There are a few different ways to repeat.

Gambas help lists them on http://Gambaswiki.org/wiki/cat/loop

23

Counting a fixed number of times:

FOR … NEXT

For i as integer = 1 to 5
 'do something
Next

i is an integer that counts 1, 2, 3, 4, 5. Don’t put “as integer” if you already have DIM i As Integer

You can use i in the loop, but do not change its value. The word NEXT increases it by one and sends
the computer back to the start (the FOR line) where i is checked to see if it is bigger than 5. If it is, it
goes to the line following NEXT.

REPEAT … UNTIL

Repeat
 'do something
Until x > 50

WHILE ... WEND

While x < 50
 'do something
Wend

To exit from a loop, BREAK. To exit from a sub, RETURN. To go to the next repetition, CONTINUE.

There is also the infinite loop, DO ... LOOP, and for items in a numbered list, FOR EACH ... NEXT.

The Moving Button

Public Sub Button1_Click()

 Do
 Repeat 'move to the right
 Button1.x += 1
 Wait 0.001
 Until Button1.x + Button1.w = FMain.Width

 Repeat 'move to the left
 Button1.x -= 1

24

 Wait 0.001
 Until Button1.x = 0
 Loop

End

Public Sub Form_KeyPress()
 Quit
End

The program ends when you press a key. Wait 0.001 delays progress for one-thousandth of a second.
The delay allows the button to be redrawn. X and Y are traditionally used for Across and Down. The
button moves from left to right and back, so it is Button1’s X that we need to change. The button
keeps moving to the right until its left side plus its width is equal to the width of the form. In other
words, it stops moving right when the right side of the button meets the right edge of the form. After
that we start subtracting from X until it meets the left edge of the form. Try changing the size of the
window while the button is in motion: the button still moves to the edge.

A Tableview That Adds Up To 5 Numbers

Type any numbers, ending each with Enter to go to the next line. The total updates when you press
Enter.

' Gambas class file

Public Sub Form_Open()
 tv1.Rows.Count = 6
 tv1.Columns.Count = 1
End

Public Sub tv1_Save(Row As Integer, Column As Integer, Value As String)

 Dim t As Integer
 tv1[Row, Column].Text = Value
 For i As Integer = 0 To 4

25

 If IsNull(tv1[i, 0].text) Then Continue
 If Not IsNumber(tv1[i, 0].text) Then Continue
 t += Val(tv1[i, 0].text)
 Next

 tv1[5, 0].Background = Color.LightGray
 tv1[5, 0].Foreground = Color.Blue
 tv1[5, 0].RichText = "" & t & "" 'tv1[5, 0].text = t

End

Public Sub tv1_Click()
 If tv1.Row < 5 Then tv1.Edit
End

Notice how the totals cell is blue on light grey, and the text is bold. "" & t & "" are tags each
side of the total. Rich text is text with tags in it. The first tag is “switch bold on” and the second,
with the slash, is “switch bold off”.

The Save event occurs when Enter or Return is pressed. After putting the typed number into the cell
with tv1[Row, Column].Text = Value, the new total is put into the richtext of cell tv1[5, 0].

Rich Text Tags

Gambas allows these tags in rich text. They are part of HTML, HyperText Markup Language, which
web browsers use to display web pages. Each is switched on first, then switched off at the end, e.g.
"<i>This is Bold Italic</i>".

<h1>, <h2>, <h3>, <h4>, <h5>, <h6> → Headlines <sup> → Superscript

 → Bold font <small> → Small

<i> → Italic <p> → Paragraph

<s> → Crossed out
 → Line break

<u> → Underlined <a> → Link

<sub> → Subscript → Font

The Font tag is used this way: "" & "" & t & ""

The Paragraph tag denotes paragraphs, which are usually separated by a blank line by browsers. It
can used this way: <p align=right>Some Text</p> but I read on one web page, referring to HTML,
“The align attribute on <p> tags is obsolete and shouldn't be used”.
(https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p). In the meantime, it works.

<tt> → single-line source text <pre> → preformatted text (preserves spacing)

<hr> → horizontal line (no end tag needed) → unsorted list

 → list → list

JimJohnAnn will give bulletted points in a vertical list.

26

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p

JimJohnAnn will give numbered points in a vertical list.

A Tableview That Adds Every Number In The Table

This program adds numbers as you type them in a 4 x 5 grid.

Public Sub Form_Open()
 tv1.Rows.Count = 5
 tv1.Columns.Count = 4
End

Public Sub tv1_Save(Row As Integer, Column As Integer, Value As String)
 Dim i, j, t As Integer
 tv1[Row, Column].Text = Value
 For i = 0 To tv1.Rows.Max
 For j = 0 To tv1.Columns.Max
 If IsNull(tv1[i, j].text) Then Continue
 If Not IsNumber(tv1[i, j].text) Then Continue
 t += Val(tv1[i, j].text)
 Next
 Next
 Label1.Text = t
End

Public Sub tv1_Click()
 tv1.Edit
End

The loops are inside each other. They mean “For every row, zip across the columns”.

For i = 0 To tv1.Rows.Max 'for every row going down...
 For j = 0 To tv1.Columns.Max 'go across every column
 ...
 Next
Next

27

Arrays, Lists, Sorting and Shuffling

There are times when you need not just separated memories with individual names like Speed,
Distance, Time but a list of memories, a collection of variables, that can be numbered. So you might
have Speed[0], Speed[1], Speed[2] and so on, all storing different speeds, or a list of several times
that have names like Time[0], Time[1], Time[2] etc. This is called an array.

The elements (items) in the array are numbered, starting from zero, and you use square brackets.
Teachers might have an array of student names, Student[0], Student[1] … Student[Student.Max].
Arrays have a count (e.g. Student.Count) and a max (Student.Max). Don’t go past Max or you will
be out of bounds. And that means detention after school for sure.

You can have arrays of just about anything. However, you need to create them with the NEW
operator when you want them.

An array of strings:

Dim Names As New String[]
Names = ["John", "Mary", "Lucy", "Owen", "Peter", "Clare", "Thomas"]

An array of integers, using the array’s Add method:

Dim Numbers As New Integer[]
'put the numbers 8 to 28 into an array; Numbers[0] is 8; Numbers[20] is 28
For i as integer = 8 to 28
 Numbers.add(i)
Next

Arrays have Sort and Shuffle methods. You can write any of these. gb.descent and its mate are
constants in the gb component.

Names.sort
Numbers.sort

Names.sort(gb.descent)
Numbers.sort(gb.descent)

Names.shuffle
Numbers.shuffle

To see your array, put a listbox on your form then put your array into its list. The array on the right
goes into the listbox’s list on the left.

Listbox1.List = Names
Listbox1.List = Numbers

28

The buttons are called bShuffle and bSort.

Public s As New String[]

Public Sub Form_Open()
 s = ["Apple", "Banana", "Carrot", "Dragonfruit", "Elderberry", "Fig",
"Grape", "Honeydew", "Imbe", "Jackfruit", "Kiwi", "Lime"]
 ListBox1.List = s
End

Public Sub bSort_Click()
 s = ListBox1.List 'copy the list into array s[]
 ListBox1.List = s.Sort() 'put the sorted s[] into the listbox's list
End

Public Sub bShuffle_Click()
 s = ListBox1.List 'copy the list into array s[]
 s.Shuffle 'shuffle the array s[]
 ListBox1.List = s 'put s into the listbox's list
End

Notice that you cannot say ListBox1.List.Shuffle, even though ListBox1’s List property acts like an
array. Yes, it is an array. No, it doesn’t come with the Shuffle method.

The shuffle button has an extra line in its Click handler compared with the sort button. s.Sort() is a
thing, a function. s.Shuffle is a method. It is not a thing but a process, a procedure. It is a sub that
does not return any value when it is done. You cannot put it into something. If you tried

29

ListBox1.List = s.shuffle() you would get an error message. The Gambas help shows how they are
different:

Sorting alphabetically and Sorting Numerically

A listbox with numbers needs to be sorted numerically. Sorting number 1 to 12 alphabetically will
give you 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9 because alphabetically “10” comes before “2”. Copy the
list into an integer array and sort that:

Public Sub bSort_Click()
 Dim x As New Integer[]
 x = ListBox1.List
 x.Sort
 ListBox1.List = x
End

30

You can see this in action:

Public z As New Integer[]
Public s As New String[]

Public Sub Form_Open()
 For i As Integer = 1 To 12
 z.Add(i)
 Next
 z.Shuffle
 ListBox1.List = z
End

Public Sub Button1_Click()
 s = ListBox1.List
 ListBox1.List = s.Sort()
End

Public Sub Button2_Click()
 z = ListBox1.List
 ListBox1.List = z.Sort()
End

31

Strings

Strings can be treated as arrays of characters. So, if Nm = "Gerard" then Nm[0] is G, Nm[1] is e, Nm[2]
is r and so on.

However, you cannot change letters like Nm[2]="x" to make Gerard become Gexard. You can get
the letter, but you can’t put something into it. You would have to use some of the wonderful
functions that strings have. You can do many things with strings. You could use any of these:

Nm = Left(Nm,1) & “x” & Mid(Nm,3)

Nm = Left(Nm,1) & “x” & Right(Nm,4)

Nm = Replace(Nm, “e”, “x”)

Public FirstName As String = "Gerard"

Public Sub b1_Click()
 Label1.Text = Left(FirstName, 1) & "x" & Mid(FirstName, 3)
End

Public Sub b2_Click()
 Label1.Text = Left(FirstName, 1) & "y" & Right(FirstName, 4)
End

Public Sub b3_Click()
 Label1.Text = Replace(FirstName, "e", "z")
End

Arrays of Arrays

You can have memories arranged in a list. They would all have the same name, but be numbered
like X[0], X[1], X[2] etc:

[0] [1] [2] [3] [4]

32

You can have memories arranged in a grid (square or rectangle) and refer to them by row and
column. This is how the cells are numbered in a GridView or TableView:

[0,0] [0,1] [0,3] [0,4]

[1,0] [1,1] [1,3] [1,4]

[2,0] [2,1] [2,3] [2,4]

You can have them arranged in a cube or prism, so that there are like layers of rectangles. The third
number in brackets tells which layer. [Row, Column, Layer]

Yes, you can have multi-dimensional arrays, but simple list arrays are the ones most often used.

33

Table of Doubles, Squares and Square Roots

This program fills a grid with calculations for the numbers one to ten. It also shows how to adjust
properties of a gridview—its columns, rows and cells.

Public Sub Form_Open()
 Me.Show
 With gv1
 .Header = GridView.Horizontal
 .Columns.Count = 4
 .Columns[0].Width = 50
 .Columns[1].Width = 60
 .Columns[2].Width = 60
 .Columns[3].Width = 50
 .Columns[0].Text = ("Number")
 .Columns[1].Text = ("Square")
 .Columns[2].Text = ("Root")
 .Columns[3].Text = ("*3+5")
 For i As Integer = 0 To 3
 .Columns[i].Alignment = Align.Right
 Next
 .Padding = 5
 End With
End

Public Sub b1_Click()
 gv1.Rows.Count = 10
End

34

Public Sub bQuit_Click()
 Quit
End

Public Sub gv1_Data(Row As Integer, Column As Integer)

 Dim x As Integer = Row + 1
 Select Case Column
 Case 0
 gv1.Data.Text = x
 Case 1
 gv1.Data.Text = x ^ 2
 Case 2
 gv1.Data.Text = Format(Sqr(x), "##.000")
 Case 3
 gv1.Data.Text = x * 3 + 5
 End Select
 If Row Mod 2 = 0 Then gv1.Data.Background = &HBFFFBF

End

Things to notice are the With … End With lines, setting up the gridview when the form opens, and
the _Data() event to fill each cell. gv1.Rows.Count = 10 is enough to trigger the Data() event for
every cell in those ten rows.

The _Data() event occurs when the cell has to be painted. The filling of the cells could be done
when the Fill button is clicked, but then we would have to use nested For statements to count down
the rows and across the columns. Gambas already has to do this, because it has to paint each cell.
The _Data() event happens for each cell in each row, so why not put the text into the cells then?

If Row Mod 2 = 0 Then gv1.Data.Background = &HBFFFBF sets the background of the cell to
peppermint green if the row number has a remainder of zero when divided by 2. Mod means “the
remainder when you divide by ...”. For example 3 Mod 2 is 1, so row 3 has a white background. 4
Mod 2 is 0 because four divided by two equals two remainder zero, so row 4 has a green
background.

We could alternate two colours, pink and green, with
gv1.Data.Background = If(Row Mod 2 = 0, &HBFFFBF, &HFFCFCF)

To colour the columns, try this in the tv1_Data() event:

35

gv1.Data.Background = Choose(Column + 1, &FFAAFF, &FFFFAA, &AAFFFF, &AAAAFF)

Format(Sqr(x), "##.000") is an interesting expression. The Format function takes a floating point
number like 1.41421356237 and formats it according to the pattern supplied. "##.000" means two
digits if you need them, a dot, and three decimal places using zeros. What number to format?
Sqr(x). This is the square root of the number x. The square root of two appears as 1.414.

Format Function

+ Print the sign of the number.

- Print the sign of the number only if it is negative.

Print a digit only if necessary.

0 Always print a digit, padding with a zero if necessary.

. Print the decimal separator.

, Print the thousand separators.

% Multiply the number by 100 and print a per-cent sign.

E Introduces the exponential part of a Float number. The sign of the exponent is always printed.

There are many more symbols for formatting dates and currency.

The Game of Moo

en.wikipedia.org

To play the game of Moo, also called Bulls and Cows, one person (the computer!) chooses a
mystery number. It has 4 digits, and all digits are different. Wikipedia says, “The modern game with
pegs was invented in 1970 by Mordecai Meirowitz, an Israeli postmaster and telecommunications
expert. It resembles an earlier pencil and paper game called Bulls and Cows that may date back a
century or more.” “Moo was written in 1970 by J. M. Grochow at MIT in the PL/I computer
language.”

After each guess the computer tells you how many bulls you scored and how many cows. A bull is a
digit in your number that is in its correct place in the mystery number. A cow is a digit that is
present in the mystery number but is in its wrong place. Thus you are aiming for BBBB, all four
digits in their correct places. CCCC means you have the correct digits but they are not in their right

36

places. BBC means two digits are correctly placed, one of the other digits is in the number but in the
wrong place, and another digit is not in the number at all. Some people play by the rule that you win
if you guess it in ten or fewer turns. Bulls are listed first and cows second. You are not told which
digits are the bulls or which are cows.

You need 2 textboxes, a gridview called gvHistory, and a button called bNewGame with the text
property “New Game”.

37

The New Game button is initially invisible.

Public MyNumber As String
Public Count As Integer

Public Sub Form_Open()
 gvHistory.Columns.Count = 2
 ChooseNumber
End

Public Sub ChooseNumber()
 Dim Digits As New String[]
 Dim i, p1, p2 As Integer
 Dim d As String
 For i = 0 To 9
 Digits.Add(Str(i))
 Next
 Digits.Shuffle
 MyNumber = Digits[0] & Digits[1] & Digits[2] & Digits[3]
End

Public Sub EvaluateGuess()
 Dim s As String
 Dim i, j As Integer
 Dim YourGuess As String = tbGuess.text
 Count += 1
 For i = 0 To 3 'look for bulls
 If YourGuess[i] = MyNumber[i] Then s &= "B"
 Next
 For i = 0 To 3 'look for cows
 For j = 0 To 3
 If i <> j And YourGuess[i] = MyNumber[j] Then s &= "C"
 Next
 Next
 tbReply.Text = s
 gvHistory.Rows.Count += 1
 gvHistory[gvHistory.Rows.max, 0].text = YourGuess
 gvHistory[gvHistory.Rows.max, 1].text = s
 If s = "BBBB" Then Congratulate
 tbGuess.SelectAll
End

Public Sub Congratulate()
 Message("Congratulations!

Got it in " & count)
 FMain.Background = Color.Yellow '&FFFF00
 bNewGame.Visible = True
End

Public Sub bNewGame_Click()
 FMain.Background = Color.Default
 bNewGame.Visible = False
 gvHistory.Rows.Count = 0
 Count = 0
 ChooseNumber
 tbReply.text = ""
 tbGuess.text = ""
 tbGuess.SetFocus
End

Public Sub tbGuess_Change()

38

 If Len(tbGuess.text) = 4 Then EvaluateGuess
End

Now for the post-mortem:

There are two public variables. MyNumber is the computer’s secret number. Count keeps count of
how many guesses.

Form_Open() On startup, set gridview to 2 columns and choose the secret number.

Public Sub ChooseNumber() Put digits 0 to 9 in a 10-item array called Digits and shuffle. The secret
number is the first four digits. They will be random and none is repeated.

Public Sub EvaluateGuess() When you evaluate a guess, it is one more guess so add 1 to Count.
Look for Bulls: Is the first character in your guess the same as the first character in the number?
Check second, third and fourth characters too. Each time two characters match, take what s was and
add a B to the end of it using s &= "B".

In looking for cows, i goes through 0, 1, 2, 3, looking through your number each time. For each one
of those digits in your number, check all the digits in the secret number looking for a match, but
disregard where the position numbers are the same (like the third digit in the secret number and the
third digit in my guess), for that is a bull and has already been found.

S is a variable that contains BBBB or BBCC or B or whatever.

Add a row to the history gridview and put the guess in the first column and its evaluation into the
second column.

Public Sub Congratulate() Show a message saying “Congratulations! You got it in 8” or whatever.
Change the form’s colour to yellow. Make the New Game button visible.

Public Sub bNewGame_Click() To start a new game, remove the yellow colour, hide the New Game
button, remove everything from the history gridview, set the count of guesses back to zero, choose
another number, blank out the two textboxes, and set the focus to the textbox where you type in a
guess so you are ready to start typing.

Public Sub tbGuess_Change() When the text in the Guess textbox changes because you have typed
another digit, check the length of what is typed and if it is 4 characters long, evaluate the guess.

Adding an “I Give Up” Feature

Let us make it that typing a question mark means “I give up—tell me the answer”. We need as new
event, tbGuess_KeyPress(). As soon as a question mark is typed, this handler will check the static
class, Key, to see if the character typed was “?”. If so, message us the correct answer and start a new
game.

Starting a new game is exactly what we have in the _Click handler for the New Game button. This
code needs to be taken out of the _Click handler and put in a sub of its own. We can call on this

39

NewGame sub when the button is clicked or when the user gives up by typing “?”. Here is the
rearranged and extra code:

Public Sub bNewGame_Click()
 NewGame
End

Public Sub NewGame()

 FMain.Background = Color.Default
 bNewGame.Visible = False
 gvHistory.Rows.Count = 0
 Count = 0
 ChooseNumber
 tbReply.text = ""
 tbGuess.text = ""
 tbGuess.SetFocus

End

Public Sub tbGuess_KeyPress()

 If Key.Text = "?" Then
 Message("My number was " & MyNumber)
 NewGame
 Stop Event
 Endif

End

Stop Event is there to prevent the question mark appearing in the tbGuess textbox. It is not
necessary.

The important principle is (and you can memorise this or take this to the bank) if you want to refer
to the same lines of code in two or more places, put them in their own sub and call on them by
name.

Assignment Operators

x = x+2 Add 2 to whatever x used to be, then put the answer back into x.

x += 2 The same thing: x becomes whatever it was (=), plus (+) 2.

x = x * 4 Multiply x by 4, and put the answer back into x.

x *= 4 The same thing: x becomes whatever it was (=), times (*) 4.

s = s & "abc" s becomes whatever s was and (&) “abc” tacked onto the end of it.

s &= "abc" The same thing: s becomes whatever it was (=) and (&) “abc” onto the end of it.

There are numeric operators including ^ to mean “raised to the power of”. Boolean operators are
AND, OR and NOT. There are others but these are the most used and useful.

40

The Game of Animal

The Animal Game, in which the computer tries to guess the animal you are thinking of by asking
you questions, was around well before people had their own computers. It dates to at least the early
1970s. The author of website http://www.animalgame.com/ says that he/she first saw it in "101
BASIC Computer Games" (ed. by David H. Ahl - Maynard, Mass., Digital Equipment, 1973.) I
remember that book. The game was originally developed by Arthur Luehrmann at Dartmouth
College. http://www.smalltime.com/Dictator has an online version where you guess the dictator
instead of an animal.

The computer starts by knowing only two animals, BIRD and FISH and only one question that can
tell the two apart, “Does it swim?”. Questions can be answered YES or NO. If your animal is
neither of these, you are asked for a question that would identify your animal. Gradually a list of
animals and questions is built up, and the computer becomes smarter and smarter. It is a simple
form of Artificial Intelligence (AI). Some wit once said, “Natural stupidity beats artificial
intelligence every time”.

To someone starting computing, it may be too complicated. However, there might be bits here and
there—saving and loading text from a text file, or the managing of big programs by breaking them
into small, meaningful subs, for example—that would be useful. Let it wash over you and get a
general feel of things. Practise debugging when you have made a typing error and the program does
not run. I was intrigued by it back in the ‘70’s, and it is too good not to include.

Here is a typical dialogue:

Are you thinking of an animal?...Yes (No ends the program.)
It is a fish..No.
The animal you were thinking of was a …?..Dog
Please type in a question that would distinguish a dog from a fish...........Does it have legs?
For a dog the answer would be…..Yes
Are you thinking of an animal?...Yes
Can it swim?..Yes
Does it have legs?..Yes
It is a dog..Yes

Here is a data file. It is text only. At the end of every question is the line to go next for yes or no.

 0. Can it swim?/1/2
 1. Does it have legs?/3/4
 2. Does it have 2 big ears?/5/6
 3. dog
 4. Does it blow air?/9/10
 5. rabbit
 6. It is little and does it bite you?/7/8
 7. mosquito
 8. Is it small?/11/12

41

http://www.smalltime.com/Dictator
http://www.animalgame.com/

 9. whale
 10. fish
 11. fly
 12. bird

The code refers to these objects by the following names. Here goes. The coloured text at the top is
TextLabel1. The “Are you thinking of an animal?” line has label LabPrompt and buttons bYes and
bNo. The “The animal you were thinking of was a ...” has label LabPromptForAnimal and textbox
tbNewAnimal. The “Please type in a question...” line has label LabQuestionPrompt. That is
followed by the long textbox tbQuestion. Under it is another label LabQuestion. The last line, “For
a 1111 the answer would be...” has label LabPrompt2 and buttons bYes2 and bNo2. The bottom line
of buttons are named, from the left, bShowData, bReset, bSave, bOpen and bQuit.

Next is another form that allows you to look at the data. It shows by clicking the Data… button.

42

The form is called FData. It will automatically adjust the positions of objects on it when it is
resized by dragging its corner handles. To do this, set its Arrangement property to Vertical. This
makes its objects stack from top to bottom. The textarea, taData, has its expand property set to True
so that its size will expand to fill the space available.

The three buttons, bSave, bCopy and bClose, are in a red rectangle the is a HBox. HBoxes spread
their contents horizontally. This one is called HBox1. There are a couple of panels called Panel1
and Panel2. One is above the hbox and one is between the Copy and Close buttons, to separate
them. There is a neat little spring called Spring1 that pushes the Save button to the left and the Copy
button, tiny separator panel and Close button to the right.

43

When the game starts, these are the only visible objects. All others have their visible property set to
False. The program sets their visibility to true later. There are four areas. Depending on the stage of
the game you are up to, one by one they are made visible and the others are hidden.

Look again at the sample data file:

 0. Can it swim?/1/2
 1. Does it have legs?/3/4
 2. Does it have 2 big ears?/5/6
 3. dog
 4. Does it blow air?/9/10
 5. rabbit
 6. It is little and does it bite you?/7/8
 7. mosquito
 8. Is it small?/11/12
 9. whale
 10. fish
 11. fly
 12. bird

44

If the line counter L arrives at a line with an animal name and that name is rejected, the program
replaces that line by the new question you give it and the new animal and the wrong animal are
added to the end of the list.

The variables declared as Public and Private right at the start are there so that they can be accessed
by several different subs. They don’t just last for the duration of the sub. They belong to the form
rather than any particular sub. (Z[] needs to be accessed by the other form, too, so it is Public.)

' Gambas class file

Public z As New String[] 'database
Private Right As Integer 'line to go to if Yes is clicked
Private Wrong As Integer 'line to go to if No is clicked
Private QuestionPrompt As String
Private AnimalPrompt As String
Private NewAnimal As String
Private AskedAQuestion As Boolean 'true if we've just said, "Is it a...?"
Private NewQuestion As String
Private L As Integer 'which line in database?
Private FromYesLink As Boolean

Public Sub bQuit_Click()
 Quit
End

Public Sub bShowData_Click()
 FData.ShowModal
 FMain.SetFocus
End

Public Sub Form_Open()
 'Make sure the NoTabFocus property is set to true for all buttons, otherwise
one will be highlighted when you start.
 QuestionPrompt = "Please type in a question that would distinguish
a
1111 from a 2222.

(e.g. Does it have...? Can
it...? Is it...?):"
 AnimalPrompt = "For a 1111 the answer would be..."
 StartGame(True) 'clears data too
End

Public Sub bSave_Click()
 SaveData
End

Public Sub SaveData()

 Dialog.Filter = ["*.txt", "Text Files"]
 If Dialog.SaveFile() Then Return
 File.Name = File.BaseName & ".txt"
 File.Save(Dialog.Path, z.Join(Chr(13)))
 FMain.SetFocus
Catch
 Message.Info(Error.Text)

End

Public Sub bOpen_Click()

45

 Dialog.Filter = ["*.txt", "Text Files"]
 If Dialog.OpenFile() Then Return
 Dim s As String = File.Load(Dialog.Path)
 z = Split(s, Chr(13))
 FMain.SetFocus
Catch
 Message.Info(Error.Text)

End

Public Sub ShowStep(Stage As Integer) '1, 2, 3 or 4

 labPrompt.Visible = (Stage = 1)
 bYes.Visible = (Stage = 1)
 bNo.Visible = (Stage = 1)

 labPromptForAnimal.Visible = (Stage = 2)
 tbNewAnimal.Visible = (Stage = 2)

 labQuestionPrompt.visible = (Stage = 3)
 tbQuestion.Visible = (Stage = 3)

 labQuestion.Visible = (Stage = 4)
 labPrompt2.Visible = (Stage = 4)
 bYes2.Visible = (Stage = 4)
 bNo2.Visible = (Stage = 4)
 Select Case Stage
 Case 2
 tbNewAnimal.SetFocus
 Case 3
 tbQuestion.SetFocus
 Case Else
 FMain.SetFocus 'a futile attempt to stop buttons being highlighted
 End Select

End

Public Sub bReset_Click()
 StartGame(True) 'clear all data too
 FMain.SetFocus
End

Public Sub StartGame(ClearDataToo As Boolean)

 If ClearDataToo Then
 z.Clear
 z.add("Can it swim?/1/2")
 z.add("fish")
 z.Add("bird")
 Endif
 L = 0
 Right = 0
 Wrong = 0
 AskedAQuestion = True
 labPrompt.text = "Are you thinking of an animal?"
 tbQuestion.Text = ""
 tbNewAnimal.Text = ""
 ShowStep(1)

End

46

Public Sub tbNewAnimal_KeyPress() 'Enter should cause the LostFocus event
 If Key.Code = Key.Enter Or Key.Code = Key.Return Then FMain.SetFocus
End

Public Sub tbNewAnimal_LostFocus() 'by pressing Enter or clicking elsewhere

 NewAnimal = LCase(tbNewAnimal.text)
 If IsNull(NewAnimal) Then Return 'user pressed enter without typing
anything; don't proceed.
 Dim s As String = Replace(QuestionPrompt, "1111", NewAnimal) 'Please type in
a question...
 s = Replace(s, "2222", z[L])
 labQuestionPrompt.text = s
 ShowStep(3)

End

Public Sub tbQuestion_KeyPress()
 If Key.Code = Key.Enter Or Key.Code = Key.Return Then FMain.SetFocus
End

Public Sub tbQuestion_LostFocus()

 NewQuestion = tbQuestion.Text
 If IsNull(NewQuestion) Then Return 'user pressed enter without typing
anything; don't proceed.
 NewQuestion = UCase(NewQuestion[0]) & Right(NewQuestion, -1) 'capitalise
first letter
 If Right(NewQuestion, 1) <> "?" Then NewQuestion &= "?"
 labQuestion.Text = NewQuestion
 labPrompt2.Text = Replace(AnimalPrompt, "1111", NewAnimal) 'For a gorilla
the answer would be...
 ShowStep(4)

End

Public Sub AskQuestion()

 Dim k As New String[]
 k = Split(z[L], "/")
 labPrompt.text = k[0]
 Right = Val(k[1])
 Wrong = Val(k[2])
 AskedAQuestion = True
 tbNewAnimal.SetFocus

End

Public Sub MakeGuess()
 labPrompt.Text = "It is " & If(InStr(Left(z[L], 1), "aeiou") > 0, "an ", "a
") & z[L] & "."
 AskedAQuestion = False
End

Public Sub bYes_Click() 'Yes has been clicked

 If AskedAQuestion Then
 L = Right 'take the right fork
 If InStr(z[L], "/") > 0 Then AskQuestion Else MakeGuess

47

 Else 'made a guess...
 StartGame(False)
 Endif
 FMain.SetFocus

End

Public Sub bNo_Click() 'No has been clicked

 If labPrompt.text = "Are you thinking of an animal?" Then Quit 'If you won't
play, I quit!
 If AskedAQuestion Then
 L = Wrong 'take the left fork
 If InStr(z[L], "/") > 0 Then AskQuestion Else MakeGuess
 Else 'made a wrong guess, so add an animal
 ShowStep(2)
 Endif

End

Public Sub bYes2_Click()

 Dim s As String = NewQuestion & "/" & Str(z.max + 1) & "/" & Str(z.max + 2)

 z.Add(NewAnimal) 'the right animal
 z.Add(z[L]) 'the wrong animal
 z[L] = s 'replace the earlier wrong animal with the new question
 StartGame(False)

End

Public Sub bNo2_Click()

 Dim s As String = NewQuestion & "/" & Str(z.max + 1) & "/" & Str(z.max + 2)
 z.Add(z[Wrong]) 'the wrong animal
 z.Add(NewAnimal) 'the right animal
 z[Wrong] = s 'replace the earlier wrong animal with the new question
 StartGame(False)

End

The code for the FData form is:

Public Sub Form_Open()
 taData.Text = FMain.z.Join(Chr(13)) 'Chr(13) is Return
End

Public Sub bClose_Click()
 Me.close
End

Public Sub bCopy_Click()
 Clipboard.Copy(taData.text)
End

Public Sub bSave_Click()
 FMain.SaveData
End

48

Notes:

Fmain.SetFocus When you click a button it highlights. To make the highlight go away at the end of
doing whatever it does, set the focus on the form. It seems to be needed.

Dim z as new string[]
z = split("a/b/c" , "/")

z will get three rows. z[0] = “a”, z[1] = “b”, z[2] = “c”
You can specify the separator, and it may be more than one character long.

Dim s as string
s= z.join(" ") Joins the array z into one string with spaces in between

IsNull(s) This is true if the string s is empty (no characters in it)

Chr(13) Every character has a code number. 13 is the number for Return. If you are
interested, A is chr(65) and a is char(97). The code is called ASCII.

Public Sub ShowStep(Stage As Integer)
 labPrompt.Visible = (Stage = 1)

This sub needs a number when it gets called. So you might say
ShowStep(1) or ShowStep(2).

If LabPrompt.Visible is true the label will be visible. If false, it is invisible.
LabPrompt’s visibility depends on the number you supply being 1.

if InStr(z[L], "/") > 0 Then If the string z[L] has a slash in it, then do something. InStr (LookInThis, ForThis)
gives the position of the second string in the first.

Making Controls Expand When a Form is Resized

Gridviews and TableViews are often made to stretch and shrink when the window they are in is
resized. A form, which is a window, knows how to resize and arrange the controls that are in it.
Even when the form opens any controls that can be arranged and expanded will be.

49

Make a small form with one TableView.

Set the arrangement property of the form to Vertical. Set the expand property of the tableview to
True. Run the program (f5). Change the size of the window and notice how the size of the tableview
changes with it.

Adjust the padding property of the form to 8. Run the program again (F5). The space between the
tableview and the edge of the form has increased. The margin inside the form is the padding. Table
cells also have padding.

Add a button under the tableview. Run the program again. Move the button to one side of the
tableview. Again run the program. Change the arrangement property to Horizontal and try again.
Change it back to Vertical.

Delete the button. Add a HBox. Add a button to the HBox. (Alternately, Right-click the button and
choose “Embed in a container”, then right-click the container—which is a panel—and Change
into... a HBox.)

Controls in a HBox are arranged horizontally.

The spring will push the button to the right as far as it will go. Experiment with and without the
spring.

If you make the button wider or narrower it stays whatever width you give it in the HBox.

The button expands vertically to fill the HBox from top to bottom. Change HBox’s height and see.
HBoxes expand their controls to fill their height. In panels the button stays the same height but you
cannot use springs.

50

A Spreadsheet to Average Student Marks

tv1 is a tableview. Its expand property is set to True.

At the bottom is a HBox. Inside, from left to right, is a label labC, a boldface label labAverage, a
spring, and a Quit button called bQuit whose text property is “Quit”.

As each number is entered the average is recalculated. Blank cells are skipped.

LabC shows the count and labAverage the average.

Public Names As New String[]
Public Scores As New Float[]

Public Sub bQuit_Click()
 Quit
End

Public Sub Form_Open()

 Names = ["Mereka AIKE", "Ernest AIRI", "John AME", "Stanley ANTHONY",
"Natasha AUA", "Veronica AUFA", "John Taylor BUNA", "Romrick CLEMENT",
"Philomena GAVIA", "Richard GHAM"]
 tv1.Rows.Count = Names.count
 Scores.Resize(Names.Count)
 tv1.Columns.Count = 2
 tv1.Columns[1].Alignment = Align.Right

End

Public Sub CalculateAverage()

51

 Dim i, n As Integer
 Dim t As Float

 For i = 0 To Scores.Max
 If Scores[i] = -1 Or IsNull(tv1[i, 1].text) Then Continue 'skip new but
unfilled-in lines
 n += 1 'number of scores
 t += Scores[i] 'total
 Next
 If n = 0 Then Return
 labC.Text = "N= " & n
 labAverage.Text = "Avg= " & Format(t / n, "#0.00")

End

Public Sub tv1_Click()
 If tv1.Column = 1 Then tv1.Edit 'numbers column is editable; Enter goes down
End

Public Sub tv1_Activate() 'double-clicked a cell
 If tv1.Column = 0 Then tv1.Edit 'edit a name
End

Public Sub tv1_Save(Row As Integer, Column As Integer, Value As String)

 tv1[Row, Column].text = Value
 If Column = 1 Then
 Scores[Row] = Value
 CalculateAverage
 Else
 Names[Row] = Value
 Endif

End

Public Sub tv1_Data(Row As Integer, Column As Integer)

 If Column = 0 Then tv1[row, 0].text = Names[Row]
 If Row Mod 2 = 0 Then tv1[Row, Column].Background = &hDDDDFF 'light blue
 tv1.Columns[0].Width = -1 'Automatically set width based on contents

End

Public Sub tv1_Insert()

 tv1.Rows.Count += 1
 Scores.Add(-1)
 Names.Add("")
 tv1.MoveTo(tv1.Rows.max, 0)
 tv1.Edit

End

Right at the start two public arrays are created. Names[] is a list of the student names. Scores[] is a
list of their results. They match: the first mark goes with the first name, the second mark with the
second name, and so on.

52

The tv1_Data(Row As Integer, Column As Integer) event fires every time a cell needs to be redrawn. It
supplies you with Row and Column. It can be thought of as painting the cell.

There is a special consideration with the _DATA event: it does not paint cells that it doesn’t need to.
This is great for displaying large numbers of lines. If there are 100,000 lines and you are only
showing 15 of them, only the cells on those 15 lines fire the _DATA event, not all hundred thousand.
Be careful if you used the _DATA event to put the numbers into the cells! There may be data in only
15 of those 100,000 cells. Here there is no problem, because we are typing the numbers ourselves
and every time we finish typing a new number it is put into the cell in the _SAVE event. (tv1[Row,
Column].text = Value). When we come to putting values in using the _DATA event from a database,
though, we shall only put data into the cells we see. Then we have to remember to do calculations
on the internally-held data, not on the displayed contents of cells. To get into good habits, I have
used the DATA[] array to hold the scores, and this is used in the calculation of averages. If comes
down to this: if you are sure all the data is in the cells, use them; if not, use the data where you
know for sure it is.

The following lines create a contextual menu for the tableview with four entries:

Public Sub tv1_Menu()

 Dim mn, su As Menu 'main menu and submenu

 mn = New Menu(Me) 'brackets contain the parent, the main window
 su = New Menu(mn) As "MenuCopyTable" 'submenu of mn; alias is MenuCopyTable
 su.Text = "Copy table..." 'first submenu's text
 su = New Menu(mn) As "MenuCopyNames"
 su.Text = "Copy names..." 'second submenu's text
 su = New Menu(mn) As "MenuDeleteRow"
 su.Text = "Delete Row" 'third submenu's text
 su = New Menu(mn) As "MenuRefresh"
 su.Text = "Refresh" 'fourth submenu's text
 mn.Popup

End

Public Sub MenuDeleteRow_Click()

 Names.Remove(tv1.Row)
 Scores.Remove(tv1.Row)
 tv1.Rows.Remove(tv1.Row)

End

Public Sub MenuCopyTable_Click() 'clicked the Copy Table menu item

 Dim z As String

 For i As Integer = 0 To Names.Max
 If Scores[i] = -1 Then Continue
 z = If(IsNull(z), "", z & gb.NewLine) & Names[i] & gb.Tab & Scores[i]
 Next
 Clipboard.Copy(z)
 Message("Table copied")

End

53

Public Sub MenuCopyNames_Click() 'clicked the Copy Names menu item

 Dim z As String
 For i As Integer = 0 To Names.Max
 If IsNull(Names[i]) Then Continue
 z = If(IsNull(z), "", z & gb.NewLine) & Names[i]
 Next
 Clipboard.Copy(z)
 Message("Names copied")

End

Public Sub MenuRefresh_Click()
 tv1.Clear 'clear the data
 tv1.Rows.Count = Names.Count 'reset number of rows to match Names[]
 For i As Integer = 0 To Names.Max
 tv1[i, 0].Text = Names[i]
 tv1[i, 1].Text = Scores[i]
 If i Mod 2 = 0 Then
 tv1[i, 0].Background = &hFFDDFF
 tv1[i, 1].Background = &hFFDDFF
 Endif
 Next
End

The _Menu() event belongs to tv1, the tableview. This event fires when the object is right-clicked
(to show a menu). The _Click() event belongs to TableviewMenu. What is that? It is the alias by
which the menu su is known. Aliases make one think of secretive men in dark trenchcoats, but it is
just the name by which it is known.

commons.wikimedia.org/wiki/File:Font_Awesome_5_solid_user-secret.svg

This man is known by an alias—as menus are.

mn and su only exist for the duration of the popup menu because they are in the _Menu() event. As
soon as you click any item on the popup menu, that sub finishes and mn and su disappear. Luckily,
we have said that su is also known as TableviewMenu. The menu itself, when it was created with
New, has that name. So any clicks the menu gets are handled by TableviewMenu_Click().

Menus—whether main menus or submenus or menu items— have several events, methods and
properties. See http:// Gambas wiki.org/wiki/comp/gb.qt4/menu :

54

http://gambaswiki.org/wiki/comp/gb.qt4/menu
http://gambaswiki.org/wiki/comp/gb.qt4/menu
http://gambaswiki.org/wiki/comp/gb.qt4/menu

You can tell a menu to Close, Hide, Popup, Show or Delete.

You can tell the program to do things when the menu is clicked, after it hides or just before it
shows. Usually it is when the menu is clicked that the menu gets to work.

Some properties are boolean (e.g. enabled, checked and visible), others are strings (e.g. text, name),
pictures (picture) or variants, which are any type (tag).

Making Contextual Menus at Design Time

There is another way to create a contextual menu for when you right-click the tableview: not in
code as we have done, but at design time. You still have to write code to handle the menu item
clicks, but you avoid all those New Menuitem statements like mn = New Menu(Me) and su = New
Menu(mn) As "MenuCopyTable". Simply use the Menu Editor to create a new menu with all its menu
items. This menu will appear on the menubar, so to avoid that happening make it invisible (see the
Visible checkbox below).

This is an easier way to make a contextual menu. It works if you know what the menu is going to be
before you start the application. If you need to make a menu depending on what is typed in, you
have to create the menu in code and use the New operator.

55

Sorting a GridView or TableView

There is no built-in sorting. I wish there were a method attached to each TableView like
TableView_Sort(Column, Direction, NumericOrNot), but there isn’t. There is a good way to sort in
the online wiki,

http:// Gambas wiki.org/wiki/comp/gb.qt4/gridview/sorted

but alas, it doesn’t sort correctly for columns containing numbers. 10 comes before 2, for example,
because “1” is would come before “2” in a dictionary. The string “10” is less than the string “2”
even though the number ten is greater than the number two.

(Thanks to fgores, Lee Davidson and Gianluigi of the forum
http:// Gambas .8142.n7.nabble.com/How-to-sort-a-TableView-td55814.html)

So here is my method—somewhat agricultural, but it works. The idea is to go through the tableview
row by row, gathering the cells in that row into a string with a separator between each, and putting
the item that will determine the sorting right at the start of each. Sort the array, then unpack each
row back into the tableview. In other words, pack each row into a string, sort the strings, and
unpack each row. Use any rare and unusual character to separate the fields. Here a tilde (~) is used.

Public Sub tv1_ColumnClick(Column As Integer)
 tv1.Save 'Calls the Save event in case the user clicked col heading without
pressing Enter
 SortTable(tv1, Column, tv1.Columns.Ascending, (Column = 1))
End

Public Sub SortTable(TheTable As TableView, Column As Integer, Ascending As
Boolean, Numeric As Boolean)

 Dim z As New String[]
 Dim y As New String[]
 Dim s As String
 Dim i, j As Integer

 For i = 0 To TheTable.Rows.Max
 If Numeric Then
 s = TheTable[i, Column].text 'next line pads it with leading zeros
 s = String$(5 - Len(s), "0") 'So 23 becomes 00023, for example. Works
up to 99999
 Else
 s = TheTable[i, Column].text
 Endif
 For j = 0 To TheTable.Columns.Max
 s &= "~" & TheTable[i, j].text
 Next
 z.add(s)
 Next

 If Ascending Then z.Sort(gb.Ascent) Else z.Sort(gb.Descent) 'sort

 For i = 0 To z.Max 'unpack the array
 y = Split(z[i], "~")
 For j = 1 To y.Max 'skip the first item, which is the sort key
 TheTable[i, j - 1].text = y[j] 'but fill the first column

56

http://gambas.8142.n7.nabble.com/How-to-sort-a-TableView-td55814.html
http://gambas.8142.n7.nabble.com/How-to-sort-a-TableView-td55814.html
http://gambas.8142.n7.nabble.com/How-to-sort-a-TableView-td55814.html
http://gambaswiki.org/wiki/comp/gb.qt4/gridview/sorted
http://gambaswiki.org/wiki/comp/gb.qt4/gridview/sorted
http://gambaswiki.org/wiki/comp/gb.qt4/gridview/sorted

 Next
 Next
End

Game of Concentration

You know the game: cards are arranged face down, you turn over a card, then you try to remember
where you have seen its match. It’s somewhere...thinks...yes, it was here! You turn it over to find …
no match! It was somewhere else. You turn the cards over and your friend takes a turn. If you do
turn over matching cards, you take the cards. Whoever has the more cards at the end wins.

en.wikipedia.org/wiki/Concentration_(card_game)

In this version, there is only one player and you are racing against the clock to match all the cards.

The form is 508 wide and 408 high, but that is what I needed when I used Cooper Black for the font
and +12 for the increased font size. Cooper Black has nice big black letters.

The File menu has three items, Give Up, New Game and Quit.

The form has its arrangement set to Fill so that the solitary gridview gv1 fills the whole window. It
shouldn’t be resized, though, so set resizeable to False.

What we will do is have a 6x6 grid. All squares will be pale yellow. In memory is a kind of mirror
image of the grid in an array called z . Arrays we have used up to now have been lists. A list is a
series of items in a line. Lines are one-dimensional. The one dimension is their length. Grids are 2-
dimensional and their two dimensions are length and width. For gridviews there are rows and
columns. In our case z has rows and columns just as the gridview gv1 has. Public z As New String[6,
6] will create z as this in-memory grid. The top left cell of the gridview is gv1[0,0]. The top left
corner of z is z[0,0]. The bottom right cell of the gridview is gv1[5,5], and the bottom right corner
of z is z[5,5]. 36 cells in the gridview, like the 36 memories in z, are arranged in rows and columns.

The gridview shows the “cards” as we turn them over. The array z has the “underneath sides of the
cards”. Pictures of your favourite relatives would be nice, but for now they will have big, Cooper
Black letters, one on each.

57

You click a grid cell. The card turns over: we show the letter that we have hidden in z. If we kept
doing this every time we clicked a grid cell there would be no game. We would just gradually reveal
all the letters. So when you show a letter we raise a flag that says “One letter is showing”. If that
flag is up, the next time you click a cell we shall know that a second card has been turned over and
it is time to check for a match. No match? Hide the letters and lower the flag—one letter is NOT
showing. If we have a match perhaps it is the very last card and you have finished the game. Or
perhaps it is not the very last card, and you can leave the cards turned over (their letters showing)
and play on, remembering to lower that flag because the next click will again be clicking the first-
card-of-the-pair. The flag is a boolean (true/false, hat on/hat off) variable called OneShowing.

How do we know the game is finished? Every time we have a match, add 2 to a running total of
how many cards are out of the game. When that total reaches 36, all cards have been matched. The
variable that keeps count is called TurnedOver and it is an integer. It is a public (or private, as in
“private to the form”—it doesn’t matter) variable, declared right at the start with all the other
variables that need to exist for the duration of the form and not disappear when a sub finishes.

There is a timer included. The built-in function Timer() represents the number of seconds since the
application started. As soon as you make your first click the time is stored in StartTime. How long
you took to play is put into the variable secs.

Dim secs As Integer = Timer() - StartTime

The game board is set up in the Initialise sub. It zeroes the things that have to be zeroed. It calls on
GetRandomLetters to make a list called s[] of the letters that will be distributed to the cells of z with
its 6 rows and 6 columns. s needs to have 18 random letters, each repeated so there are matching
pairs. It has 36 items altogether. Here are the screenshots and the code.

58

Looking for matches

59

“Give Up” shows where they all were.

60

The 508 x 458 form. Arrangement property = Full. gv1 has expand set to True.
The File menu has 3 items: Give Up, New Game and Quit.

' Gambas class file

Const nRows As Integer = 6
Const nCols As Integer = 6
Const PaleYellow As Integer = &hFFFFAA
Public TurnedOver As Integer
Public z As New String[nRows, nCols]
Public s As New String[]
Public OneShowing As Boolean
Public FirstRow As Integer
Public FirstColumn As Integer
Public StartTime As Float

Public Sub Form_Open()

 Dim i, j As Integer
 gv1.Columns.count = nCols
 gv1.Rows.Count = nRows
 gv1.Background = Color.DarkBlue
 For i = 0 To gv1.Columns.max
 gv1.Columns[i].Alignment = Align.Center

61

 gv1.Columns[i].Width = 84
 For j = 0 To gv1.Rows.max
 gv1[i, j].Padding = 16
 Next
 Next
 Initialise

End

Public Sub Initialise()

 Dim i, j, n, nCol, nRow As Integer
 Dim c As String

 nCol = gv1.Columns.max
 nRow = gv1.Rows.Max
 GetRandomLetters(18) 'each letter twice
 For i = 0 To nRow
 For j = 0 To nCol
 c = s[n]
 z[i, j] = c
 gv1[i, j].ForeGround = Color.Black
 gv1[i, j].Text = ""
 gv1[i, j].Background = Color.DarkBlue
 n = n + 1
 Next
 Next
 TurnedOver = 0

End

Public Sub GetRandomLetters(Count As Integer)

 Dim i, p, r1, r2 As Integer
 Randomize 'different random numbers every time
 s.clear
 p = Rand(Asc("A"), Asc("Z")) 'start with any letter
 Do Until s.count >= 2 * Count
 s.Add(Chr(p))
 s.Add(Chr(p)) 'other one in the pair
 p += 1
 If p > Asc("Z") Then p = Asc("A") 'back to the start
 Loop
 For i = 0 To s.Count 'c.shuffle() 'When I update to 3.13 I can use this!
 r1 = Rand(0, s.max)
 r2 = Rand(0, s.max)
 Swap s[r1], s[r2]
 Next

End

Public Sub MenuNew_Click()
 Initialise
End

Public Sub MenuQuit_Click()
 Quit
End

Public Sub gv1_Click()

62

 If TurnedOver = 0 Then StartTime = Timer 'begin timing from the first click
 If OneShowing Then
 gv1[gv1.row, gv1.Column].Background = Color.DarkBlue
 gv1[gv1.row, gv1.Column].Foreground = Color.White
 gv1[gv1.row, gv1.Column].Text = z[gv1.row, gv1.Column]
 gv1.Refresh
 Wait 'finish pending operations and do the refresh
 Evaluate(gv1.row, gv1.Column)
 Else
 FirstRow = gv1.row
 FirstColumn = gv1.Column
 gv1[FirstRow, Firstcolumn].Background = Color.DarkBlue
 gv1[FirstRow, Firstcolumn].Foreground = Color.White
 gv1[FirstRow, Firstcolumn].Text = z[FirstRow, FirstColumn]
 OneShowing = True
 Endif

End

Public Sub Evaluate(row As Integer, column As Integer)

 If z[FirstRow, FirstColumn] = gv1[row, column].Text Then 'a match
 TurnedOver += 2
 If TurnedOver = nRows * nCols Then
 Dim t As String
 t = TheTime()
 Message("Well done!
You took " & t)
 Initialise
 Else
 Wait 0.5
 gv1[FirstRow, FirstColumn].Text = ""
 gv1[row, column].Text = ""
 gv1[FirstRow, FirstColumn].Background = PaleYellow
 gv1[row, column].Background = PaleYellow
 Endif

 Else 'no match
 Wait 1 'second
 gv1[FirstRow, FirstColumn].Text = ""
 gv1[row, column].Text = ""
 gv1[FirstRow, FirstColumn].Background = Color.DarkBlue
 gv1[row, column].Background = Color.DarkBlue

 Endif
 OneShowing = False

End

Public Sub TheTime() As String

 Dim secs As Integer = Timer() - StartTime
 Dim h As Integer = secs / 60 / 60

 Secs -= h * 60 * 60
 Dim m As Integer = secs / 60
 Secs -= m * 60
 Return If(h > 0, Str(h) & "h ", "") & If(m > 0, Str(m) & "m ", "") &
Str(secs) & "s"

63

End

Public Sub MenuGiveUp_Click()

 For i As Integer = 0 To nRows - 1
 For j As Integer = 0 To nCols - 1
 If gv1[i, j].Text = "" Then
 gv1[i, j].ForeGround = Color.Red
 gv1[i, j].Text = z[i, j]
 gv1[i, j].Background = Color.DarkRed
 End If
 Next
 Next

End

If you prefer to work with clicking pictures, you will need a folder called Pix located in your
Pictures folder. You need to put 18 pictures in it (jpg or png).

Now, where is the other Snoopy?

64

“Give up” shows where they all were.

In the code that follows, the picture files are read into an array of images. Images and Pictures in
Gambas differ in what part of memory they are stored in. Images, unlike pictures, can be stretched
to fit in an area with any given width and height. So the images in the array of eighteen are, when
one is needed, put into a single Image called Img, stretched to fit one of the grid cells. The resulting
image, now the right size, is converted to a picture using the Picture method that images have.

To show an image the cell’s Picture property is set to the converted image. To hide it the picture
property is set to Null. This happens when you click on a cell.

There is a corresponding two-dimensional (rows/columns) array of picture names. To see if there is
a match, the names of the pictures in the two clicked-on cells are compared.

It is time to congratulate the winner when 18 cells have been correctly matched (two at a time).

' Gambas class file

Const nRows As Integer = 6
Const nCols As Integer = 6
Const PaleYellow As Integer = &hFFFFAA
Public TurnedOver As Integer
Public z As New String[nRows, nCols] 'names of the pictures
Public Images As New Image[nRows, nCols] 'the images themselves

65

Public Img As Image
Public s As New String[]
Public OneShowing As Boolean
Public FirstRow As Integer
Public FirstColumn As Integer
Public StartTime As Float

Public Sub Form_Open()

 Dim i, j As Integer

 gv1.Columns.count = nCols
 gv1.Rows.Count = nRows
 gv1.Background = PaleYellow
 For i = 0 To gv1.Columns.max
 gv1.Columns[i].Alignment = Align.Center
 gv1.Columns[i].Width = 84
 Next
 Initialise

End

Public Sub Initialise()

 Dim i, j, n, nCol, nRow As Integer
 Dim c As String

 nCol = gv1.Columns.max
 nRow = gv1.Rows.Max
 GetRandomLetters 'each picture twice
 For i = 0 To nRow
 gv1.Rows[i].Height = 70
 For j = 0 To nCol
 c = s[n]
 z[i, j] = c
 gv1[i, j].Picture = Null
 gv1[i, j].Background = Color.DarkCyan
 n = n + 1
 Next
 Next
 TurnedOver = 0

End

Public Sub GetRandomLetters()

 Dim i, j, n As Integer
 Dim path As String = User.Home &/ "Pictures/Pix/" 'must be 18 pictures in
here
 Dim cellW As Float = gv1[0, 0].Width
 Dim cellH As Float = gv1[0, 0].Height
 Dim scale As Float = Min(CellW, CellH)

 If Not Exist(Path) Then
 Message("Please create a folder called Pix in your Pictures folder.
Put
18 pictures in it.")
 Quit
 Endif
 s = Dir(path, "*.png")
 s.Insert(Dir(path, "*.jpg"))

66

 If s.Count < 18 Then
 Message("Please put 18 pictures in the Pix folder inside your Pictures
folder.
There were only " & s.Count)
 Quit
 Endif
 s.Insert(s) 'second copy
 s.Shuffle
 For i = 0 To gv1.Rows.Max
 For j = 0 To gv1.Columns.Max
 Images[i, j] = Image.Load(path & s[n])
 n += 1
 Next
 Next

End

Public Sub MenuNew_Click()

 Initialise

End

Public Sub MenuQuit_Click()

 Quit

End

Public Sub gv1_Click()

 If TurnedOver = 0 Then StartTime = Timer 'begin timing from the first click
 If OneShowing Then
 gv1[gv1.row, gv1.Column].Background = Color.White
 Img = Images[gv1.row, gv1.Column].stretch(70, 70)
 gv1[gv1.row, gv1.Column].Picture = Img.Picture
 gv1.Refresh
 Wait 'finish pending operations and do the refresh
 Evaluate(gv1.row, gv1.Column)
 Else
 FirstRow = gv1.row
 FirstColumn = gv1.Column
 gv1[FirstRow, Firstcolumn].Background = Color.White
 Img = Images[FirstRow, FirstColumn].stretch(70, 70)
 gv1[FirstRow, Firstcolumn].Picture = Img.Picture
 OneShowing = True
 Endif

End

Public Sub Evaluate(row As Integer, column As Integer)

 If z[FirstRow, FirstColumn] = z[row, column] Then 'a match
 TurnedOver += 2
 If TurnedOver = nRows * nCols Then
 Dim t As String
 t = TheTime()
 Message("Well done!
You took " & t)
 Initialise
 Else
 Wait 0.5 'half second

67

 gv1[FirstRow, FirstColumn].Picture = Null
 gv1[row, column].Picture = Null
 gv1[FirstRow, FirstColumn].Background = PaleYellow
 gv1[row, column].Background = PaleYellow
 Endif

 Else 'no match
 Wait 1 'second
 gv1[FirstRow, FirstColumn].Picture = Null
 gv1[row, column].Picture = Null
 gv1[FirstRow, FirstColumn].Background = Color.DarkCyan
 gv1[row, column].Background = Color.DarkCyan

 Endif
 OneShowing = False

End

Public Sub TheTime() As String

 Dim secs As Integer = Timer() - StartTime
 Dim h As Integer = secs / 60 / 60

 Secs -= h * 60 * 60
 Dim m As Integer = secs / 60
 Secs -= m * 60
 Return If(h > 0, Str(h) & "h ", "") & If(m > 0, Str(m) & "m ", "") &
Str(secs) & "s"

End

Public Sub MenuGiveUp_Click()

 For i As Integer = 0 To nRows - 1
 For j As Integer = 0 To nCols - 1
 If gv1[i, j].Picture = Null Then
 Img = Images[i, j].Stretch(70, 70)
 gv1[i, j].Picture = Img.Picture
 gv1[i, j].Background = Color.White
 End If
 Next
 Next

End

ASCII Codes

Characters (letters, digits, punctuation symbols) are stored in a computer’s memory by numbers.
The most widely used system is ASCII, American Standard Code for Information Interchange. It
was developed in the United States, and Wikipedia tells me the governing body prefers to call it
US-ASCII because it uses the American dollar sign ($) and the Latin alphabet. Whenever you hit a
key on the keyboard one of those code numbers goes into the computer. Even the non-printing
characters have ASCII codes. The spacebar is 32. Hit the Delete key and 127 would go in. The
Backspace key sent the number 8. To confuse you, the ASCII code for the digit ‘1’ is 49. What the

68

computer does with these code numbers is up to the application. And you are writing the
applications. In the above program, type what you like and nothing happens at all (except for
CTRL-G which I have for “Give Up”, CTRL-N which is “New Game” and CTRL-Q, which is the
shortcut for Quit).

On the old manual typewriters at the end of a line you had to flick a lever and the roller with the
paper going around it would zip back to the start of the line (Return) and pull the paper up a line
(Linefeed) ready to start typing the next line. Return is 13. ASCII 13 is also Control-M (written ^M)
and in programming languages is sometimes written \r. Linefeed is 10 and is also Control-J (^J).
There is a Formfeed control, Control-L, that used to go to a new page (ASCII 12). You wouldn’t
remember manual typewriters unless you spend time in museums, but for me it is like yesterday
(sigh). Nowadays ASCII is largely replaced by Unicode. ASCII was limited to 128 characters.
Unicode can display 137,993 characters, says Wikipedia—enough for all sorts of non-English
characters and all the emojis you could ever want.

Even the original ASCII gave problems for people who spoke languages other than English.
Wikipedia has the amusing example of ‘a Swedish programmer mailing another programmer asking
if they should go for lunch, could get "N{ jag har sm|rg}sar" as the answer, which should be "Nä jag
har smörgåsar" meaning "No I've got sandwiches" ’ and he or she would just have to put up with it.
https://en.wikipedia.org/wiki/ASCII .

Radio Buttons and Groups

Radio Buttons—one goes down, the others pop up

Radio buttons are like the buttons on the old cassette players. When you press down on one the
others pop up. They are used for selecting one option among many.

69

https://en.wikipedia.org/wiki/ASCII

If you have some radio buttons in a form, only one can be highlighted. Click one and the others
clear. Even in code if you set one button’s highlight the others will unhighlight by themselves. The
value property (boolean) indicates if the button is highlighted. When you click a radio button rb1
rb1.value = true happens automatically. When you click another button rb1.value = false happens
automatically.

You might need two sets of radio buttons. To keep them separate, create them in a panel or some
other container. Put the panel there first, and then make radio buttons in it, or select all the buttons
you want to work together, right-click, and choose Embed in a container.

Another trick is to make them all share their events. Click any of the buttons and one and only one
_Click event will fire. This avoids writing separate _Click handlers for each button. One handler
does them all. But how do you know which button was clicked? Your one handler will probably
want to do something based on which button was selected. This is where Last comes in. Last is the
very last object that something happened to or that did something.

There are two sets of buttons, with each set in their own panel. rbRoad, rbSea and rbAir are in
Panel1. rbApple, rbOrange and rbPear are in Panel2. The panels are the parents of their buttons.
The buttons are their children.

The Group property for the road, sea and air buttons is set to rbTransport. It is as if they are acting
like they are one single radio button, rbTransport.

The Group property for the apple, orange and pear buttons is set to rbFruit. It is as if they are one
radio button, rbFruit.

Double-click one of the transport buttons (any one). You will find yourself writing a handler for the
rbTransport group of buttons. Likewise, double-click one of the fruit buttons and you will find
yourself writing a handler that rbApple, rbOrange and rbPear all respond to.

Public Sub rbTransport_Click()
 Message("You choose to travel by " & Last.text)
End

Public Sub rbFruit_Click()
 Message("I like " & LCase(Last.text) & "s too!")
End

70

The LCase function makes the text inside the brackets lower case. Run the program and click on
buttons.

Add Settings Saving to the Radio Buttons

Gambas provides a neat way to save settings. Settings can be the path to the last data file, so it does
not have to be relocated the next time the program starts. They can be anything the user typed or
chose that you want to remember for next time. Here we shall save the selected radio buttons.

First, make sure the Settings component is enabled as part of your project. After starting a new QT
graphical project, select Project Menu > Properties…, look through for the gb.settings component
and tick it:

Use the same form as above with the fruit and transport buttons, but change the code to this:

Public Sub rbTransport_Click()
 Settings["Radiobuttons/Transport"] = Last.Text
End

Public Sub rbFruit_Click()
 Settings["Radiobuttons/Fruit"] = Last.Text
End

Public Sub Form_Open()

 Select Case Settings["Radiobuttons/Transport"]
 Case "Road"
 rbRoad.value = True
 Case "Sea"
 rbSea.Value = True
 Case "Air"
 rbAir.value = True
 End Select

 Select Case Settings["Radiobuttons/Fruit"]
 Case "Apple"
 rbApple.value = True
 Case "Orange"

71

 rbOrange.Value = True
 Case "Pear"
 rbPear.value = True
 End Select

End

Run the program. Select a transport and fruit. Close the program. Run it again: your choices have
been restored.

You could have your settings saved when the form closes. Gambas wiki has this example, showing
how you can restore the window to whatever place it was last dragged to and whatever size it was
resized to when last the program ran:

Public Sub Form_Open() 'Restore settings
 Me.Top = Settings["Window/Top", Me.Top]
 Me.Left = Settings["Window/Left", Me.Left]
 Me.Height = Settings["Window/Height", Me.Height]
 Me.Width = Settings["Window/Width", Me.Width]
End

Public Sub Form_Close() 'Save settings
 Settings["Window/Top"] = Me.Top
 Settings["Window/Left"] = Me.Left
 Settings["Window/Height"] = Me.Height
 Settings["Window/Width"] = Me.Width
End

Me means the current form.

Where are these settings actually stored? In your home folder is a hidden folder for settings
called .config . In Linux any file or folder whose name starts with a dot is hidden. Look in .config
for the Gambas3 folder. In it you will find a text file with the same name as your program. Open it
and you will see the settings file.

The settings text file for the application called 17_Radio_Buttons_Saving_Settings.

Settings are neatly arranged under headings. Now you can see the significance of the string that has
the slash in it: the first item is the heading. Settings["Radiobuttons/Fruit"] is the Fruit setting under
the Radiobuttons heading.

You need to be careful: the very first time you run your program there may not be a settings file. If
your form opens and looks for a particular setting when no settings file exists there will be
problems. Test for empty (null) strings.

72

Saving a colour, a checkbox and the contents of a TableView

On the form is a checkbox cbSurnameFirst, a panel Panel1, a label with the text “Choose colour:”,
a colorbutton ColorButton1, a label Label1 whose text is “Fill”, colour blue and underlined, and a
tableview tv1.

Run the program. Fill the tableview with random letters. Choose a colour. Highlight the completely
useless button “Surname first”. Close the program. Run the program again. Settings are restored.

Public Sub ColorButton1_Change()
 Panel1.Background = ColorButton1.Color
 Settings["Colours/PanelColour"] = Panel1.Background
End

Public Sub Label1_MouseDown()

 tv1.Columns.count = 2
 Settings["TableView/Columns"] = tv1.Columns.count
 tv1.Rows.count = 4
 Settings["TableView/Rows"] = tv1.Rows.count
 For i As Integer = 0 To tv1.Rows.Max
 For j As Integer = 0 To tv1.Columns.Max
 tv1[i, j].text = Chr(Rand(Asc("A"), Asc("Z")))
 Settings["TableView/" & i & "," & j] = tv1[i, j].text
 Next
 Next

End

73

Public Sub cbSurnameFirst_Click()
 Settings["Names/SurnameFirst"] = cbSurnameFirst.Value
End

Public Sub Form_Open() 'restore settings

 Dim Surname As String = Settings["Names/SurnameFirst"]
 cbSurnameFirst.Value = If(IsNull(Surname), False, Surname)
 Dim nCols As String = Settings["TableView/Columns"]
 tv1.Columns.count = If(IsNull(nCols), 2, nCols)
 Dim nRows As String = Settings["TableView/Rows"]
 tv1.Rows.count = If(IsNull(nRows), 4, nRows)
 For i As Integer = 0 To tv1.Rows.Max
 For j As Integer = 0 To tv1.Columns.Max
 tv1[i, j].text = Settings["TableView/" & i & "," & j]
 Next
 Next
 Dim colour As String = Settings["Colours/PanelColour"]
 Panel1.Background = If(IsNull(colour), &hFFFFFF, colour)

End

IF Function

There is a special form of the IF...THEN...ELSE statement that saves writing several lines of code.
It is in the form of a function. These two are equivalent:

if IsNull(colour) Then
 Panel1.Background = &hFFFFFF 'white
Else
 Panel1.Background = colour
EndIf

and

Panel1.Background = If(IsNull(colour), &hFFFFFF, colour)

In the one-line statement, the If(IsNull(colour), &hFFFFFF, colour) is one single thing. It is a number
representing a color. Which colour? In the brackets are three items: a test that is either true or false,
the answer if the test comes up true and the answer if the test comes up false. The pattern is
if(TrueOrFalseThing, ValueIfTrue, ValueIfFalse). &hFFFFFF is the hexadecimal number for White
(all red, green and blue LED lights fully on).

74

This is a sample settings file:

On the left, the checkbox is unchecked. On the right, the checkbox is checked.

A SearchBox to Locate Names by Typing

On the right, Romrick Clement’s name was found as soon as CL was typed.

If you are a teacher entering marks you might have a pile of a hundred assignments, in random
order. It would be good to be able to locate a name by typing a few letters. When the name is
located, press Enter so you can type the mark. Press Enter again and you are ready to locate the
next name.

75

This program has a tableview that allows you to locate names by typing. The letters do not have to
be from the start of the name; they can be anywhere in it. To find the next occurrence of the string
of letters you have typed (e.g. the next ‘John’), press tab or right-arrow. To find the previous
occurrence of the string, shift-tab or left-arrow. To clear the search string and start again, press esc,
backspace or delete.

To stop making Enter leave the cell and allow you to search for another name, and instead move to
the cell below (as you would if typing marks down the list in sequence), select Down from the File
menu (shortcut, Ctrl-D). Enter then moves you down the list.

' Gambas class file

Static ss As String

Public Sub tv1_KeyPress()

 Select Case Key.Code
 Case Key.Esc, Key.BackSpace, Key.Del
 ss = ""
 tv1.UnSelectAll
 Case Key.Enter, Key.Return
 EnterOnLine 'action on pressing Enter
 ss = ""
 tv1.UnSelectAll
 Case Key.Tab
 SearchDown
 Case Key.BackTab
 SearchUp
 Case Else
 ss &= Key.Text
 SearchDown
 End Select

End

Public Sub SearchUp()

 Dim i, Start As Integer
 If tv1.Rows.Selection.Count = 0 Then Start = -1 Else Start =
tv1.Rows.Selection[0] 'the selected line
 For i = Start - 1 DownTo 0
 If InStr(LCase(tv1[i, 0].text), LCase(ss)) Then
 tv1.Rows.Select(i)
 Return
 Endif
 Next
 For i = tv1.Rows.max DownTo Start
 If InStr(LCase(tv1[i, 0].text), LCase(ss)) Then
 tv1.Rows.Select(i)
 Return
 Endif
 Next

End

Public Sub SearchDown()

76

 Dim i, Start As Integer
 If tv1.Rows.Selection.Count = 0 Then Start = -1 Else Start =
tv1.Rows.Selection[0]
 For i = Start + 1 To tv1.Rows.Max 'if no selected line, start at top, else
start at next line
 If InStr(LCase(tv1[i, 0].text), LCase(ss)) > 0 Then
 tv1.Rows.Select(i)
 Return
 Endif
 Next
 For i = 0 To Start 'if no more occurrences, you will end up at the line you
are on
 If InStr(LCase(tv1[i, 0].text), LCase(ss)) > 0 Then
 tv1.Rows.Select(i)
 Return
 Endif
 Next

End

Public Sub EnterOnLine()
 tv1.Column = 1
 tv1.Edit
End

Public Sub Form_Open()

 Dim Names As New String[]
 Dim i As Integer
 Names = ["Mereka AIKE", "Ernest AIRI", "John AME", "Stanley ANTHONY",
"Natasha AUA", "Veronica AUFA", "John Taylor BUNA", "Romrick CLEMENT",
"Philomena GAVIA", "Richard GHAM", "Gerard BUZOLIC", "John HEARNE", "Thomas
EDISON"]
 tv1.Rows.Count = Names.count
 tv1.Columns.Count = 2
 tv1.Columns[0].Background = &hDDDDFF
 For i = 0 To Names.Max
 tv1[i, 0].text = Names[i]
 Next
 tv1.Columns[0].Width = 140 '-1 for max needed width
 tv1.Mode = Select.Single
 tv1.NoKeyboard = True

End

Public Sub tv1_Save(Row As Integer, Column As Integer, Value As String)
 tv1[Row, Column].text = Value
End

Public Sub MenuQuit_Click()
 Quit
End

Public Sub tv1_Click()

 If tv1.Column > 0 Then 'first column is not editable
 If MenuDown.Checked Then
 tv1.Edit
 Else
 ss = ""

77

 tv1.SetFocus
 tv1.Edit
 Return
 Endif
 Endif

End

Public Sub tv1_DblClick()
 tv1.Edit 'to edit the names in the first column, double-click one of them
End

Public Sub MenuDown_Click()
 MenuDown.Checked = Not MenuDown.Checked
 tv1.NoKeyboard = Not MenuDown.Checked
End

Modules and Classes

Programs tend to become large as more features are added to them. More menu items mean more
menu handlers. More buttons, more lists, more tables—all mean more subs. There needs to be a
way to organise them, and there is. The files in a computer are organised into folders. The subs in a
program are organised into modules and classes.

Modules are like containers. Classes are like animals of various species.

You can put what you like into containers. You can collect all the subs that are related in some way
and put them into a module. For example, you might make a module called Time and put in it all
the bits of program related to times and dates. In it you might put that great function you wrote to
work out a person’s age given their date of birth. You called it

Public Sub AgeThisYear(DOB as date) as string

And with it you could put that function that takes how many seconds you took to complete a puzzle
and convert it into minutes and seconds format:

Public Sub TidyTime(Secs as integer) as string

They could go into the Time module to save cluttering up the form’s code. There will be enough
event handlers to fill it up without these functions as well. You cannot move those event handlers
into a module. They have to be in the form’s code, waiting for something on the form to do
something to make them fire.

How do you call on subs that have been put into a module? You have to refer to the module they
have been put in, and the name of the sub. It is like having a crowd of people all gathered together
in a park. You can call out “John!” or “Mary!” and John or Mary will step forward. Once you start
putting people into houses, though, it has to be “HollyCottage.John” or “FernyVale.Mary”. There
might be several Johns or Marys, for one thing. So we would refer to

78

Time.AgeThisYear(“1/6/1955”)

and

Time.TidyTime(258)

Anything in a module is available throughout your program. Modules are like boxes or folders or
filing cabinets: just places you can park your subs. To call them, put the module name, a dot, then
the sub.

Classes, though, are like kinds of animals. In the animal world, species are grouped into genuses,
genuses into families, and so on up to Kingdom (and now one higher level, Domain), which used to
be Animal or Plant but now includes others (Monera which is mainly bacteria, Protists which
include algae and protozoans, and Fungi which is mushrooms, moulds and yeasts). Every animal
and plant has a two-part name made up of Genus and Species. “Genus” means “General” and
“Species” means “Specific”. My name is, let us say, Luke Bilgewater. There are many different
individuals in the Bilgewater family, but only one Luke Bilgewater. Luke is the specific name and
Bilgewater is the general or generic name. The classification system goes this way:

DOMAIN → KINGDOM → PHYLUM → CLASS → ORDER → FAMILY → GENUS → SPECIES.

You will notice that “Class” comes in there. In programming, classes are things that you can have
examples of. A tableview is a class. You can have many tableviews in a program. A button is a class.
You can have many buttons. A menu is a class. You can have many menus. A form is a class. You
can have many forms.

You can also derive classes from other classes.

Let’s take the horse. Wikipedia says, “At present, the domesticated and wild horses are considered a
single species, with the valid scientific name for the horse species being Equus ferus”. Imagine a
horse with wings. It would have everything that regular horses have (properties, like tails and
hooves) and can do everything that regular horses do (methods, like gallop and neigh) and respond
to things regular horses respond to (events, like approaching a water trough or getting saddled up).
However, in addition to these, it will have wings. This new class, Equus Pegasus, will inherit
everything that an Equus has, but will also have Public Sub Wings() … End specific to this special
type of Equus.

Classes (unlike modules) can have as many real live examples as you want. Each example will have
its own wings. Each will have its own name. “Make a new example of one of these kinds of
animals” is, in programming language, “instantiate” or “make a new instance”.

A class is an abstract thing (like a type of animal). You need instances of the class to have anything
you can work with.

In saying that a class definition is like a blueprint, that is the usual case. If you want the class to
exist as a one-of-a-kind animal, you can do that by making it Static. Gambas has static classes.
They are classes that are always there. Modules are static classes: always there, and you only have
one of them.

79

An example of a static class is Key. In the online help it says, about Key, “This class is used for
getting information about a key event, and contains the constants that represent the keys. … This
class is static.” It is always there; it is a once-off thing; refer to it as if it were the name of a beast,
not just the kind of beast that it is. So the key that was just typed is Key.Text and the number code
for that key is Key.Code . Just as sure as horses have legs, Key has several constants you can refer
to, like Key.Enter and Key.Return and Key.Del and Key.Esc that are the code numbers for those
keys. And just as sure as horses can have a saddle on or a saddle off, there is the property Key.Shift
and Key.Control that can be up or down, that is to say, true or false.

Let’s take a tableview and give it wings. Our new class will be everything that a tableview is, but
with the additional ability to locate lines by typing in a few of the letters. It is our SearchBox again,
only this time we shall make it a class. Then we can make as many new SearchBoxes as we like. We
only need design the prototype for the new car; after that we can have as many rolling off the
assembly line as we like.

Making a SearchBox Class

The File Menu has two entries, Go Down and Quit. Don’t give Go Down a keyboard shortcut. (If
typed while in a cell you can find yourself in an endless loop—nothing happens, nothing responds.)
The menu items are called MenuGoingDown and MenuQuit respectively.

The menu item Go Down uses its checkbox. If ticked, searching for names by typing is switched
off. Enter moves the cursor down to the next cell below as usual. If unticked (the program starts this
way), type a few letters to locate a person’s name and press Enter to enter the score. Then press

80

Enter again to leave the cell and be ready to search for the next name. The tableview property that is
critical here is NoKeyboard. The menu item sets or unsets it.

Steps:

1. Start a new graphical application.

2. Create a new class, make it Exported and call it “SearchBox”. (Rt-click the Sources folder >
New > Class...)

3. Enter the line INHERITS TableView right at the top of the class.

4. Press F5 to run the application. Quit the program straight away.

Now there should be a SearchBox among the classes. Drag one onto the form FMain. You have just
made a new instance. You can peel off as many copies as you want. For the moment, we only need
the one.

Now we teach our horse to fly. This code goes in the SearchBox class:

Export 'Without this you will not see the class in the toolbar of classes
Inherits TableView

Private ss As String
Public SearchColumn As Integer
Event EnterOnLine

Public Sub CheckKey()

 Select Case Key.Code
 Case Key.Esc, Key.BackSpace, Key.Del
 ss = ""
 Me.UnSelectAll

81

 Case Key.Enter, Key.Return
 Raise EnterOnLine 'action on pressing Enter
 ss = ""
 Case Key.Tab
 SearchDown
 Case Key.BackTab
 SearchUp
 Case Else
 ss &= Key.Text
 SearchDown
 End Select

End

Private Sub SearchUp()

 Dim i, Start As Integer
 If Me.Rows.Selection.Count = 0 Then Start = -1 Else Start =
Me.Rows.Selection[0] 'the selected line
 For i = Start - 1 DownTo 0
 If InStr(LCase(Me[i, SearchColumn].text), LCase(ss)) Then
 Me.Rows.Select(i)
 Return
 Endif
 Next
 For i = Me.Rows.max DownTo Start
 If InStr(LCase(Me[i, SearchColumn].text), LCase(ss)) Then
 Me.Rows.Select(i)
 Return
 Endif
 Next

End

Private Sub SearchDown()

 Dim i, Start As Integer
 If Me.Rows.Selection.Count = 0 Then Start = -1 Else Start =
Me.Rows.Selection[0]
 For i = Start + 1 To Me.Rows.Max 'if no selected line, start at top, else
start at next line
 If InStr(LCase(Me[i, SearchColumn].text), LCase(ss)) > 0 Then
 Me.Rows.Select(i)
 Return
 Endif
 Next
 For i = 0 To Start 'if no more occurrences, you will end up at the line you
are on
 If InStr(LCase(Me[i, SearchColumn].text), LCase(ss)) > 0 Then
 Me.Rows.Select(i)
 Return
 Endif
 Next

End

Public Sub HandleClick()
 If Me.Column = SearchColumn Then Return 'searchable column is not editable
by clicking
 ss = ""

82

 Me.Edit
End

This above code is now part of all searchboxes. It still has to be called upon at the right times. If
not, it will never get done. So here is the code for the main form FMain:

Public Sub sb1_EnterOnLine()
 sb1.Column = 1
 sb1.Edit
End

Public Sub Form_Open()

 Dim Names As New String[]
 Dim i As Integer
 Names = ["Mereka AIKE", "Ernest AIRI", "John AME", "Stanley ANTHONY",
"Natasha AUA", "Veronica AUFA", "John Taylor BUNA", "Romrick CLEMENT",
"Philomena GAVIA", "Richard GHAM", "Gerard BUZOLIC", "John HEARNE", "Thomas
EDISON"]
 sb1.Rows.Count = Names.count
 sb1.Columns.Count = 2
 For i = 0 To Names.Max
 sb1[i, 0].text = Names[i]
 If i Mod 2 = 0 Then
 sb1[i, 0].Background = &hDDDDFF
 sb1[i, 1].Background = &hDDDDFF
 End If
 Next
 sb1.Columns[0].Width = 140 '-1 for max needed width
 sb1.Mode = Select.Single
 sb1.NoKeyboard = True 'start with sb1 selecting the line when Enter is
pressed in a cell
 sb1.Expand = True
 sb1.SetFocus

End

Public Sub MenuQuit_Click() 'Yes, I put in a Quit menuitem in a File menu.
 Quit
End

Public Sub sb1_KeyPress()
 sb1.CheckKey()
End

Public Sub sb1_DblClick()
 sb1.Edit 'to edit the names in the searchable column, double-click one of
them
End

Public Sub sb1_Save(Row As Integer, Column As Integer, Value As String)
 sb1[Row, Column].text = Value
End

Public Sub sb1_Click()
 sb1.HandleClick
End

83

Public Sub MenuGoingDown_Click()
 MenuGoingDown.Checked = Not MenuGoingDown.Checked
 sb1.NoKeyboard = Not sb1.NoKeyboard
End

This horse knows how to fly. This tableview, now known by the illustrious and noble name of
SearchBox, knows how to search for occurrences of what you type.

You talk to the horse when the horse is listening. You talk to the SearchBox when it gives you events
that you can intercept. Our particular SearchBox, sb1, gives us all the events that tableviews do, and
one more. It has a homemade event EnterOnLine.

The horse does what you tell it if you use words it understands. When the form gets a keypress event
from the searchbox, tell it to CheckKey. SearchBox knows how to check your key. SearchBox will
happily scan upwards or downwards looking for the next occurrence of what you typed. If you are
happy with the selected line it presents to you, it will notify you with the EnterInLine event.
Otherwise it adds the key to the string of letters you have already typed and does some more
searching, starting with the next line.

EnterOnLine is raised when the key you type gets checked. If you typed Enter or Return, the
EnterOnLine event occurs. In the main window you decide what you are going to do about it (if
anything). In our case, it means we have found the line we are after and we want to type in the
second column.

In a sense, you talk to the class through events and the class talks to you through events that it
itself raises.

Homemade events that your classes give you might be like a simple greeting (“Hello!”) or they can
convey parameters (“Hello, I’ll be there in 5 minutes!”). Our EnterOnLine might tell us which line
you pressed Enter on. Then the Event definition would then read

Event EnterOnLine(LineNum as integer)

And the event handler might read

Public Sub sb1_EnterOnLine(LinNum As Integer)
 sb1.Row = LinNum
 sb1.Column = 1
 sb1.Edit
End

When a line is highlighted its Row property is set to that row anyway, so it is not necessary. Like,
why give a command to move to a row when you are already at that row? So the LinNum parameter
is not necessary, but the horse talks to you through events it raises and it could tell you what line
you are on when it sends you an event if you wanted it to.

84

Setting Up a Class

If there are things to do when a new instance of a class is created, like setting up how many rows
and columns there should be in a tableview or the names of the column headings, the place to do it
is in a special sub called _new() . Whenever a new example of the class is made with the New
operator, this event is called.

In the SearchBox program above, we can take all the setting up that is done in the Form_Open()
event handler and move it into the class itself. Delete the Form_Open() event, and in the SearchBox
class put the code there. When you run the program it works exactly the same.

Now the class sets itself up. The form does not have to set up each one.

Public Sub _new()

 Dim Names As New String[]
 Dim i As Integer
 Names = ["Mereka AIKE", "Ernest AIRI", "John AME", "Stanley ANTHONY",
"Natasha AUA", "Veronica AUFA", "John Taylor BUNA", "Romrick CLEMENT",
"Philomena GAVIA", "Richard GHAM", "Gerard BUZOLIC", "John HEARNE", "Thomas
EDISON"]
 Me.Rows.Count = Names.count
 Me.Columns.Count = 2
 For i = 0 To Names.Max
 Me[i, 0].text = Names[i]
 If i Mod 2 = 0 Then
 Me[i, 0].Background = &hDDDDFF
 Me[i, 1].Background = &hDDDDFF
 End If
 Next
 Me.Columns[0].Width = 140 '-1 for max needed width
 Me.Mode = Select.Single
 Me.NoKeyboard = True 'start with sb1 selecting the line when Enter is
pressed in a cell
 Me.Expand = True
 Me.SetFocus

End

SQLite Databases

85

A database is a file on the hard drive that has a structure to it so that it can hold large amounts of
information and access it quickly.

SQLite is one type of database. It was written by Dwayne Richard Hipp (born 1961 in North
Carolina). It was first released in August 2000. It is public domain, meaning anyone can use it free
of charge. Google Chrome, Firefox, the Android operating system for smartphones, Skype, Adobe
Reader and the iPhone all use SQLite. It’s just nice. And you pronounce it “S Q L Lite”, so saith
Wikipedia.

Databases store information in tables. Gambas has a tableview. This, too, has rows and columns.
You can think of a database table as an invisible tableview in the database file.

Rows are called Records. Columns are called Fields.

For example, a teaching might have a database with a Students table. In that table there is a row for
every student. Looking across the row you see StudentID, FirstName, LastName, Sex, DateOfBirth,
Address, PhoneNumber. These are the fields. They are the columns.

StudentID FirstName LastName Sex DateOfBirth Address PhoneNumber

2019001 Mary Smith F 2008-06-23 21 Holly Crt, Bundaberg 07324657

2019002 Jim Jones M 2003-02-19 14 Primrose St, Bundaberg 07123456

2019003 Lucy Watkins F 2003-10-05 5 Flower St, Bundaberg 07938276

This could be a TableView, or a Table in a Database file.

Every database table has to have a Primary Key. Every record must have a unique value for this
field: one that no one else shares. The simplest is to call it RecID and number 1, 2, 3... etc. In the
table above, the primary key is going to be the StudentID and it is an integer. The first four digits
are the year of enrolment. (We could have another column for YearOfEnrolment and just use a
sequence number for the StudentID.)

In SQLite all data is stored as strings, even though you might specify some columns as integers,
others as strings and others as dates. SQLite is very forgiving: you can put things that aren’t
numbers into integer columns and so on, but try not to. Empty cells are NULL. Try to avoid those,
too. When you make a new blank record, initialise values to the empty string, “”.

Including the Database Facility

86

SQLite is a component (optional part) of Gambas. There is also a Database access component. On
the Project Menu > Properties… > Components page, be sure to tick gb.db and gb.db.sqlite3.
Without these components in your project you will get errors as soon as you try to run your
program.

SQL — Structured Query Language

You send messages to SQLite and it sends answers back to you using a special language called SQL
(“S Q L” or “sequel”, pronounce it either way.) This means learning another language, but the
simple statements that are used most frequently are not difficult to learn. They are the only ones I
know, anyway. SQL was invented by Donald D. Chamberlin and Raymond F. Boyce and first
appeared in 1974. SQL is so universal that everyone who writes databases knows of it. It is an
international standard. SQLite is one implementation of it.

For example, you might send a message to SQLite saying

SELECT * FROM Students

This says, “select everything from the Students table”. This gives you the whole table. Or you might
only want the students who are male:

SELECT * FROM Students WHERE Sex = 'M'

Perhaps you want everyone, but you want the females first and the males second:

SELECT * FROM Students ORDER BY Sex

That will get the females first, because “F” comes before “M”. The females will all be in random
order and likewise the males unless you write

SELECT * FROM Students ORDER BY Sex DESC, LastName ASC

This returns a table to you with males first (alphabetically by surname) followed by females
(alphabetically by surname).

You might only want the students names, so you could write

SELECT FirstName, LastName FROM Students ORDER BY LastName

87

Perhaps you want only those students who were enrolled in 2019. Now, this is part of the
StudentID. You want only those students whose StudentID number starts with “2019”. You use a
“wildcard”. The percent (%) sign means “anything here will do”.

SELECT FirstName, LastName FROM Students WHERE StudentID LIKE '2019%'

When you send these SELECT statements to the database, SQLite will send you back a table.
Gambas calls it a RESULT.

Suppose you have a database called db1 (as far as Gambas is concerned) and it is attached to
MyStudentDatabase.sqlite which is the actual database file on your hard drive. You need a result to
store the reply:

Dim res as Result
res = db1.exec("SELECT * FROM Students")

res has the information you asked for. You might want to print the information, or show it in a
tableview, or hold it internally in arrays so you can do calculations on it. You need to cycle through
the records thus:

While res.Available
 'do something with res!FirstName, res!LastName and res!DateOfBirth etc
 res.MoveNext
Wend

For displaying information in a tableview there is a special event that is triggered each time a cell
has to have its contents painted on the screen. It is particularly useful if your set of records is large.
The tableview does not have to hold all the information from all the records in itself. It can get the
information as it needs it for when it has to be displayed. Be a little careful here: if you are
depending on all the information being in the tableview, it may or it may not be all there. This is an
example of using the _Data event, getting the information from the result table res when it is
needed to display a particular cell in the tableview:

Public Sub TableView1_Data(Row As Integer, Column As Integer)
 res.MoveTo(row)
 If Column = 0 Then
 TableView1.Data.Text = res!FirstName
 Else
 TableView1.Data.Text = res!LastName
 Endif
End

Notice the use of TableView1.Data.Text , which represents the text in the cell.

88

Notice we have result.MoveTo to go to a particular record, result.MoveNext if we are stepping
through them one at a time, and result.Available to check to see if there is another record to
MoveNext to. Useful in setting the number of rows to have in your tableview is result.RecordCount.

Besides accessing the information in the database, with databases you want to be able to:

1. Add records

2. Delete records

3. Modify records

All but the simplest databases have more than one table in them. Tables can be linked to each other,
so records can have signposts in them to indicate lines in other tables that apply. The signpost is the
record ID or other primary key of a record in another table. For example, a database of political
candidates might have a signpost to the party they belong to. SQL is so smart it can look up the two
tables at once to provide you with the information you need, for example this ‘join’ of two tables.
(Candidates are in a particular party, and it is the parties that have policies on a variety of issues.)

SELECT Candidate,PolicyOnPensions FROM Candidates,Parties WHERE
Candidate.PartyID = Parties.PartyID AND Candidates.Electorate="Fairfax"

Database with a Single Table, to be filled with Random Numbers

The next program comes from https://kalaharix.wordpress.com/ Gambas /creating-a-databases-and-
tables-from- Gambas / slightly rearranged. It creates a database in your home folder called
Test.sqlite, fills it with random two-digit numbers, then accesses the database to show them in a
tableview.

You need a form with a tableview called tv1. Make it long and thin, as it has 2 columns.

89

https://kalaharix.wordpress.com/gambas/creating-a-databases-and-tables-from-gambas/
https://kalaharix.wordpress.com/gambas/creating-a-databases-and-tables-from-gambas/
https://kalaharix.wordpress.com/gambas/creating-a-databases-and-tables-from-gambas/
https://kalaharix.wordpress.com/gambas/creating-a-databases-and-tables-from-gambas/
https://kalaharix.wordpress.com/gambas/creating-a-databases-and-tables-from-gambas/
https://kalaharix.wordpress.com/gambas/creating-a-databases-and-tables-from-gambas/

' Gambas class file

Private db1 As New Connection
Private rs As Result

Public Sub SetupTableView()

 tv1.header = GridView.Horizontal
 tv1.grid = True
 tv1.Rows.count = 0
 tv1.Columns.count = 2
 tv1.Columns[0].text = "RecID"
 tv1.Columns[1].text = "Value"
 tv1.Columns[0].width = 55
 tv1.Columns[1].width = 55

End

Public Sub CreateDatabase()

 db1.Type = "sqlite"
 db1.host = User.home
 db1.name = ""

 'delete an existing test.sqlite
 If Exist(User.home & "/Test.sqlite") Then
 Kill User.home & "/Test.sqlite"
 Endif

 'create test.sqlite
 db1.Open

90

 db1.Databases.Add("Test.sqlite")
 db1.Close

End

Public Sub MakeTable()

 Dim hTable As Table

 db1.name = "Test.sqlite"
 db1.Open
 hTable = db1.Tables.Add("RandomNumbers")
 hTable.Fields.Add("RecID", db.Integer)
 hTable.Fields.Add("Value", db.Integer)
 hTable.PrimaryKey = ["RecID"]
 hTable.Update

End

Public Sub FillTable()

 Dim i As Integer
 Dim rs1 As Result

 db1.Begin
 rs1 = db1.Create("RandomNumbers")
 For i = 1 To 10000
 rs1!RecID = i
 rs1!Value = Rand(10, 99)
 rs1.Update
 Next
 db1.Commit

Catch
 db1.Rollback
 Message.Error(Error.Text)

End

Public Sub ReadData()
 'read the database
 Dim SQL As String = "SELECT * FROM RandomNumbers"
 rs = db1.Exec(SQL)
End

Public Sub Form_Open()
 SetupTableView
 CreateDatabase
 MakeTable
 FillTable
 ReadData
End

Public Sub Form_Activate()
 'change the rowcount of the gridview from 0 to the number of records.
 'This triggers the data handling event
 tv1.Rows.Count = rs.Count
End

Public Sub tv1_Data(Row As Integer, Column As Integer)

91

 rs.moveTo(row)
 If Column = 0 Then tv1.Data.Text = rs!RecID Else tv1.Data.Text = rs!Value
 'If Column = 0 Then tv1.Data.Text = Str(rs["RecID"]) Else tv1.Data.Text =
Str(rs["Value"])
 'Either of these two lines will do it.
End

Public Sub Form_Close()
 db1.Close
End

When you work with a database a temporary “journal” file is created. That file is incorporated into
the database when it is “committed”. If you don’t want to commit, you “rollback” the database to
what it was before you made these latest changes. The temporary file contains the “transaction”,
meaning the latest work you have just done to change the database. That is what the db1.Begin,
db1.Commit and db1.Rollback mean.

The above program is a good template to adapt when making a database.

A Cash Spending Application

This application saves records of cash spending. You can allocate each expenditure to a category.
Each time you allocate to a category, totals are worked out for the categories and you can see what
fraction of your spending went to each of the categories.

If you know you spent, say, €100, and you can only account for, say €85, you can distribute the
remaining €15 among the categories.

Before letting loose on the code and after a look at the form we shall take a look at the process of
designing such an application.

92

The File menu has items MenuNewDatabase, MenuOpen and MenuQuit.

The Data Menu has items MenuNewSpending, MenuNewCategory, MenuClearSpending,
MenuClearCategories, MenuRound, MenuUnselectAll, MenuCalculate and MenuCopy.

The Help menu is optional.

The textbox whose name you cannot quite see above is tbDistribute.

93

The program starts by opening the last database file that was open, or prompting to make a new one
if it is the first time, or locating it if you sneakily moved it since the last time it was open. It also
starts with a blank row in the Spending and Categories tableviews.

When a category is chosen for the selected spending line (click a category line anywhere except in
the name column and press Enter) the category totals and percentages are recalculated.

Typing in the Target textbox is optional. If there is a number in it, “Still to do” will be calculated.

Internally, the database has two tables called Spending and Categories. You can see two tableviews
corresponding to the two database tables. These are the fields in each table:

The two primary keys are SpendingID and CatID. They number the records in sequence (1, 2, 3...)

94

The Spending table’s Category field contains a number which, when you look it up in the
Categories table, gives you the category name. This is good: if you change the spelling of a
category name you only have to change it once.

Hidden Columns

The user does not need to see the record IDs. They are internal to the database. They have to be
unique: each record must have its own record ID. They are the primary keys of the Spending and
Categories tables. They will be the very first columns in the tableviews, but they will be hidden
from view (zero width). Also, in the Spending table, the user does not want to see the Category ID
(the reference to one of the categories). It will be the last column in the Spending table, and also
zero width. The columns start from zero, so it is column 5, just to the right of the Amount column.

List the Jobs

Having sketched out a form design and planned the tables and fields with pencil and paper, we next
think of what we want the program to do. It is good to keep in mind the things databases do: Add,
Delete, Modify (as well as display the data). Here is a list. These are going to be the subs.

Database

NewDatabase Create a new database file on disk with its two tables

OpenDatabase Open the database and display what is in it on startup

General

Calculate Add up totals and work out percentages for each category

DoTotals Grand totals for amounts in spending and categories tables

SetupTableViews The right number of rows and columns and column headings

Spending Table

NewSpending Add a record to the Spending table

ShowSpending Display what is in the Spending table in tv1, the tableview

TidySpendingTable The final part of ShowSpending, really. Alternating blue lines

SumSpending Part of “DoTotals”; add up all the spending totals

Clear a category (make it a right-click menu)

Delete a record when you press DEL or BACKSPACE on a selected line

Categories Table

NewCategory Add a record to the Categories table

ShowCategories Display what is in the Categories table in tvCategories

TidyCategoriesTable The final part of ShowCategories. Alternating blue lines.

SumCategories Part of “DoTotals”; add up all the category amounts

Insert default categories into the categories table (a menu item)

EnterOnCategoryLine Enter on a line inserts category on the selected spending line.

95

Delete a record when you press DEL or BACKSPACE on a selected line

Other Features

Work out how much is left to allocate

Distribute what is left among the categories

A Help window

Save what database we are using in Settings for next time

Copy everything as text, to paste into a word processing document

Round numbers to whole euros (and check totals are not out by one)

A Quit menu item to close the program

Useful Functions

CategoryNameFromID Given the CatID number, return the Category Name (a string)

Massage Given the user’s choice of filename, remove bad characters

Now it is time to program. Write the subs. Work out when they will be called on to do their work.
Some can be consigned to menus. Some can happen when you click things. You are the one who is
going to use this program: Do you want to click buttons? Do you want windows to pop up when
you add a new category or a new spending transaction? Are there nice ways of doing things—
intuitive ways—so things can happen naturally, as a new user might expect them to happen? We do
some thinking and come up with some ideas:

• We can do with a blank row in each table to start with, that you can type in.

• When you finish typing in a cell, save that cell. Avoid having to click a Save button.

• When you press Enter in the last cell of the line, make a new line.

• When a category line is selected and the user presses Enter, put that category into whatever
line in the spending table that is selected (highlighted). Move to the next spending line that
doesn’t have a category so you can click a category line and Enter it. So you can enter
categories for all the lines at the end, after you have entered everything else.

• When you start, open the same database you had open last time. If none, give a choice of
creating a new database or browsing to find the database that you moved or somebody may
have given to you on a USB or in an email.

• Edit a category by clicking on it.

• Edit a cell in the spending table by clicking on it (except the category — just Enter on a line
in the categories table to put a new one in.)

• When you allocate a spending line to a category, recalculate the percentages for all
categories.

96

• When you change the total in the Target textbox, do a subtraction to find out how much you
still have left to allocate.

• Put blanks into cells that have nothing in them rather than zeros.

• Pressing Delete or backspace in either of the tableviews will delete the selected
(highlighted) line and delete its record from the database. No questions, no confirmation
request—it just does it. Only one line can be deleted at a time, and it is easy enough to re-
enter if you press Delete by mistake.

• If the first cell on a tableview row has a record ID number in it, the record exists and saving
just has to update it. If it is blank, the database has to first create a new record, giving it the
next highest record number, put its record number in the first cell, and then update it.

Here are the names of the objects on the form FMain:

Panels: Panel1 (pink), Panel2 (blue)

Labels saying “Spending”, “Categories”, “Target:”, “= Done:”, “+ Still to do:”, “Amount:”

Labels called “LabSpendingTotal” and “LabCategoriesTotal” top right of the tableviews.

TableViews: tv1 for spending and tvCategories

TextBoxes: tbTarget, tbDone, tbToDo, tbDistribute

Button: bDistribute

File Menu: MenuNewDatabase, MenuOpen (Ctrl-O), MenuQuit (Ctrl-Q)

Data Menu: MenuNewSpending (Ctrl-N), MenuNewCategory (Ctrl-K), MenuClearSpending,
MenuClearCategories, MenuDefaultCategories, MenuRound (Ctrl-R), MenuUnselectAll (Ctrl-
Space), MenuCalculate (F4), MenuCopy (Ctrl-C)

Help Menu: Help and Instructions (F1) (Opens a separate form called Help. Put on it what you like.)

Category Menu (invisible, so it is not on the main menubar): MenuClearCategory (This one pops up
with you right-click a category cell in the spending table.)

Here is the code. Following it is an explanation of the SQL statements.

Public fdb As New Connection 'finance database
Public rs As Result 'result set after querying database
Public SQL As String

Public Sub Form_Open()

 SetUpTableViews
 If IsNull(Settings["Database/host"]) Then
 Select Case Message.Question("Create a new data file, or open an existing
one?", "New...", "Open...", "Quit")
 Case 1 'new

97

 NewDatabase
 Case 2 'open
 OpenDatabase(Null, Null)
 Case Else
 Quit
 End Select
 Else
 OpenDatabase(Settings["Database/host"], Settings["Database/name"])
 Endif

End

Public Sub Form_Close()
 fdb.Close 'close connection
End

Public Sub OpenDatabase(dbHost As String, dbName As String) 'if these are
null, ask where the database is

 If Not Exist(dbHost &/ dbName) Or IsNull(dbHost) Then 'it's not where it was
last time, or path not supplied
 Dialog.Title = "Where is the database?"
 Dialog.Filter = ["*.db"]
 Dialog.Path = User.Home &/ "Documents/"
 If Dialog.OpenFile() Then Return ' User pressed Cancel; still can't open a
database
 Dim s As String = Dialog.Path
 Dim p As Integer = RInStr(s, "/") 'position of last slash
 fdb.host = Left(s, p)
 fdb.Name = Mid(s, p + 1)
 Else
 fdb.host = dbHost
 fdb.Name = dbName
 End If

 Try fdb.Close
 fdb.type = "sqlite3"
 Try fdb.Open
 If fdb.Opened Then
 FMain.Caption = fdb.host &/ fdb.Name
 Settings["Database/host"] = fdb.host
 Settings["Database/name"] = fdb.Name
 Else
 Message.Info("Couldn't connect.

... please try again or
create a new database.")
 Return
 Endif

 ShowSpending
 ShowCategories
 Calculate

End

Public Sub NewDatabase()

 Dialog.Path = User.Home & "/" 'setting it to "~/" doesn't work
 Dialog.Title = "Create a New Database"
 If Dialog.SaveFile() Then Return 'clicked Cancel
 Dim s As String = Dialog.Path & ".db"

98

 Dim p As Integer = RInStr(s, "/") 'position of last slash
 Dim FName As String = Mid(s, p + 1)
 fdb.host = Left(s, p)
 fdb.Name = "" 'This MUST be left blank. If not, database file will not be
created
 fdb.Type = "sqlite3"

 If Exist(s) Then Kill s 'delete existing file of that name
 fdb.Close
 Try fdb.Open 'opens a connection to the database; do this after setting
properties and before creating
 If Error Then
 Message("Unable to open the database file

" & Error.Text)
 Return
 Endif
 fdb.Databases.Add(fName) 'does the creating

 fdb.Close
 Dim dbTable As Table
 fdb.name = fName
 Try fdb.Open
 If Not fdb.opened Then
 Message("Unable to open the data file")
 Return
 Endif
 dbTable = fdb.Tables.Add("Spending")
 dbTable.Fields.Add("SpendingID", db.Integer)
 dbTable.Fields.Add("TransDate", db.String)
 dbTable.Fields.Add("Category", db.Integer)
 dbTable.Fields.Add("Comment", db.String)
 dbTable.Fields.Add("Amount", db.Float)
 dbTable.PrimaryKey = ["SpendingID"]
 dbTable.Update
 rs = fdb.Create("Spending")
 If fdb.Error Then
 Message("Couldn't create the Spending table.

: " & Error.Text)
 Return
 Endif

 rs!SpendingID = 1
 rs!TransDate = ""
 rs!Category = 0
 rs!Comment = ""
 rs!Amount = 0.0
 rs.Update
 fdb.Commit
 If fdb.Error Then
 Message("Couldn't save a first record in the Spending table.

: " &
Error.Text)
 Return
 Endif

 fdb.Close
 fdb.name = fName
 Try fdb.Open
 If Not fdb.opened Then
 Message("Unable to open the data file")
 Return
 Endif
 dbTable = fdb.Tables.Add("Categories")

99

 dbTable.Fields.Add("CatID", db.Integer)
 dbTable.Fields.Add("Category", db.String)
 dbTable.PrimaryKey = ["CatID"]
 dbTable.Update
 rs = fdb.Create("Categories")
 If fdb.Error Then
 Message("Couldn't create the Categories table.

: " & Error.Text)
 Return
 Endif

 rs!CatID = 1
 rs!Category = ""
 rs.Update
 fdb.Commit
 If fdb.Error Then
 Message("Couldn't save a first record in the Categories table.

: "
& Error.Text)
 Return
 Endif

End

Public Sub DoTotals()

 labCategoriesTotal.Text = SumTheCategories()
 labSpendingTotal.text = SumTheSpending()
 tbDone.Text = labSpendingTotal.Text

End

Public Sub ShowSpending()

 rs = fdb.Exec("SELECT * FROM Spending")
 Dim L, CatID As Integer
 Dim CatName As String
 tv1.Rows.Count = 0 'clear
 If Not IsNull(rs) Then
 While rs.Available
 tv1.Rows.Count += 1
 L = tv1.Rows.max
 tv1[L, 0].text = rs!SpendingID
 tv1[L, 1].Text = rs!TransDate
 tv1[L, 2].Text = Format(rs!Amount, "0.00")
 CatName = rs!Category
 If Not IsNull(CatName) Then
 CatID = If(IsNull(Val(CatName)), -1, Val(CatName))
 If CatID > -1 Then tv1[L, 3].Text = CategoryNameFromID(CatID)
 Endif
 tv1[L, 4].Text = rs!Comment
 tv1[L, 5].Text = rs!Category 'Category ID in this hidden column
 rs.MoveNext
 Wend
 Endif
 If tv1.Rows.Count = 0 Then tv1.Rows.Count = 1
 TidySpendingTable

End

Public Sub ShowCategories()

100

 rs = fdb.Exec("SELECT * FROM Categories")
 Dim L As Integer
 Dim t As Float
 tvCategories.Rows.Count = 0 'clear
 If Not IsNull(rs) Then
 While rs.Available
 tvCategories.Rows.Count += 1
 L = tvCategories.Rows.max
 tvCategories[L, 0].text = rs!CatID
 tvCategories[L, 3].Text = rs!Category
 rs.MoveNext
 Wend
 Endif
 If tvCategories.Rows.Count = 0 Then tvCategories.Rows.Count = 1
 TidyCategoriesTable

End

Public Sub NewSpending()
 tv1.Rows.count = tv1.Rows.count + 1
 tv1.MoveTo(tv1.Rows.Max, 1)
 tv1.Edit
End

Public Sub NewCategory()
 tvCategories.Rows.count = tvCategories.Rows.count + 1
 tvCategories.row += 1
 tvCategories.Edit
End

Public Sub tv1_Insert()
 NewSpending
End

Public Sub tvCategories_Insert()
 NewCategory
End

Public Sub tv1_Click()

 Select Case tv1.Column
 Case 1, 2, 4
 tv1.Edit
 Case 3
 If tvCategories.Rows.Count > 0 Then
 tvCategories.SetFocus
 tvCategories.Rows[0].Selected = True
 Endif
 End Select

End

Public Sub tvCategories_Click()
 If tvCategories.Column = 3 Then tvCategories.Edit
End

Public Sub SetUpTableViews()

 Dim i As Integer
 tv1.Columns.count = 6

101

 tv1.Rows.count = 1
 tv1.Columns[0].Width = 0
 tv1.Columns[1].Alignment = Align.Center
 tv1.Columns[2].Alignment = Align.Right
 For i = 1 To tv1.Columns.Max - 1
 tv1.Columns[i].Width = Choose(i, 80, 80, 130, tv1.Width - tv1.ClientW -
306)
 tv1.Columns[i].Text = Choose(i, "Date", "Amount", "Category", "Comment")
 Next
 tvCategories.Columns.count = 4
 tvCategories.Rows.count = 1
 tvCategories.Columns[0].Width = 0
 For i = 1 To tvCategories.Columns.Max
 tvCategories.Columns[i].Width = Choose(i, 60, 60, tvCategories.Width -
tvCategories.ClientW - 350)
 tvCategories.Columns[i].Text = Choose(i, "Total", "%", "Category")
 Next
 tvCategories.Columns[1].Alignment = Align.right
 tvCategories.Columns[2].Alignment = Align.Center
 tv1.Columns[5].Width = 0

End

Public Sub TidySpendingTable()

 For i As Integer = 0 To tv1.Rows.Max
 For j As Integer = 0 To tv1.Columns.Max
 If j = 2 Or j = 3 Then tv1[i, j].Padding = 4
 If i Mod 2 = 1 Then tv1[i, j].Background = &hF0F0FF
 Next
 Next

End

Public Sub TidyCategoriesTable()

 For i As Integer = 0 To tvCategories.Rows.Max
 For j As Integer = 1 To tvCategories.Columns.Max
 tvCategories[i, j].Padding = 4
 If i Mod 2 = 1 Then tvCategories[i, j].Background = &hF0F0FF
 Next
 Next

End

Public Sub Massage(s As String) As String
 'Doesn't like spaces or hyphens in file names. Doesn't complain; just
doesn't create the file.

 Dim z As String

 For i As Integer = 0 To Len(s) - 1
 If IsLetter(s[i]) Or IsDigit(s[i]) Or s[i] = "_" Or s[i] = "." Then z &=
s[i] Else z &= "_"
 Next
 Return z

End

102

Public Sub tvCategories_Save(Row As Integer, Column As Integer, Value As
String)

 Dim RecID As Integer
 Dim OriginalValue As String = tvCategories[Row, Column].Text

 tvCategories[Row, Column].Text = Value
 If IsNull(tvCategories[Row, 0].Text) Then 'no record ID, so we need a new
record
 Dim Res As Result
 SQL = "SELECT MAX(CatID) as 'TheMax' FROM Categories"
 Res = fdb.Exec(SQL)
 If IsNull(Res!TheMax) Then RecID = 1 Else RecID = Res!TheMax + 1
 tvCategories[Row, 0].Text = RecID
 SQL = "INSERT INTO Categories(CatID,Category) VALUES(" & RecID & ",'')"
 fdb.Exec(SQL)
 If fdb.Error Then Message("Couldn't save:

" & SQL & "

" &
Error.Text)
 Endif
 'update the record
 RecID = tvCategories[Row, 0].Text
 SQL = "UPDATE Categories SET Category = '" & Value & "' WHERE CatID='" &
RecID & "'"
 Try fdb.Exec(SQL)
 If fdb.Error Then Message("Couldn't save:" & SQL & "

" & Error.Text)
 If Value <> OriginalValue Then ShowSpending 'category name was changed

End

Public Sub tv1_Save(Row As Integer, Column As Integer, Value As String)

 Dim RecID As Integer

 Dim FieldName As String = Choose(Column, "TransDate", "Amount", "Category",
"Comment")

 If IsNull(tv1[Row, 0].Text) Then 'There's no Record ID, so insert a new
record
 Dim Res As Result
 SQL = "SELECT MAX(SpendingID) as 'TheMax' FROM Spending"
 Try Res = fdb.Exec(SQL)
 If IsNull(Res!TheMax) Then RecID = 1 Else RecID = Res!TheMax + 1
 tv1[Row, 0].Text = RecID
 SQL = "INSERT INTO Spending(SpendingID,TransDate,Amount,Category,Comment)
VALUES('" & RecID & "',' ',' ',' ',' ')"
 Try fdb.Exec(SQL)
 If Error Then
 Message("Couldn't save: " & Error.Text)
 Return
 Endif
 Endif
 'update record
 RecID = tv1[Row, 0].Text
 SQL = "UPDATE Spending SET " & FieldName & " = '" & Value & "' WHERE
SpendingID='" & RecID & "'"
 Try fdb.Exec(SQL)
 If Error Then
 Message("Couldn't save:" & SQL & "

" & Error.Text)
 Return
 Endif

103

 If Column = 2 Then
 tv1[Row, Column].Text = Format(Val(Value), "###0.00")
 Calculate 'amount has changed
 Else
 tv1[Row, Column].Text = Value
 Endif

Catch
 Message("Couldn't save ... have you created and opened a database yet?")
 Stop Event 'Don't go automatically to the next cell. If you do, you'll get
this message twice.

End

Public Sub tv1_KeyPress()

 Select Case Key.Code
 Case Key.BackSpace, Key.Del 'remove record
 Dim RecID As Integer = tv1[tv1.Row, 0].Text
 SQL = "DELETE FROM Spending WHERE SpendingID='" & RecID & "'"
 Try fdb.Exec(SQL)
 If Error Then
 Message("Couldn't delete

" & Error.Text)
 Else
 tv1.Rows.Remove(tv1.Row)
 If tv1.Rows.Count = 0 Then tv1.Rows.Count = 1
 Endif
 Case Key.Enter, Key.Return
 If tvCategories.Rows.Count > 0 Then
 tvCategories.SetFocus
 tvCategories.Rows[0].Selected = True
 Endif
 End Select

End

Public Sub tvCategories_KeyPress()

 Select Case Key.Code
 Case Key.BackSpace, Key.Del 'remove record
 Dim RecID As Integer = tvCategories[tvCategories.Row, 0].Text
 SQL = "DELETE FROM Categories WHERE CatID='" & RecID & "'"
 Try fdb.Exec(SQL)
 If Error Then
 Message("Couldn't delete

" & Error.Text)
 Else
 tvCategories.Rows.Remove(tvCategories.Row)
 Endif
 Case Key.Enter, Key.Return
 EnterOnCategoryLine 'action on pressing Enter
 tvCategories.UnSelectAll
 End Select

End

Public Sub MenuClearSpending_Click()
 fdb.Exec("DELETE FROM Spending")
 tv1.Rows.count = 1
 tv1.Clear
End

104

Public Sub MenuClearCategories_Click()

 fdb.Exec("DELETE FROM Categories")
 tvCategories.Rows.count = 1
 tvCategories.Clear

End

Public Sub CategoryNameFromID(ID As Integer) As String

 Dim res As Result = fdb.Exec("SELECT Category FROM Categories WHERE CatID="
& ID)

 If Not res.Available Then Return "?"
 If IsNull(res!Category) Then Return "-"
 Return res!Category

End

Public Sub EnterOnCategoryLine() 'apply this category to the selected
Spending line

 If tv1.row < 0 Then Return
 If IsNull(tv1[tv1.row, 0].text) Then
 Message("Please save this spending record first by entering some other
item of data; there's no record ID yet.")
 Return
 Endif
 tv1[tv1.row, 3].text = tvCategories[tvCategories.row, 3].Text
 Dim CategoryID As String = tvCategories[tvCategories.row, 0].Text
 Dim SpendingID As String = tv1[tv1.row, 0].text
 tv1[tv1.row, 5].text = CategoryID
 SQL = "UPDATE Spending SET Category='" & CategoryID & "' WHERE SpendingID='"
& SpendingID & "'"
 Try fdb.Exec(SQL)
 If Error Then
 Message("Couldn't save the category

" & SQL & "

" &
Error.text)
 Return
 Endif
 Calculate
 For i As Integer = tv1.row To tv1.Rows.Max
 If IsNull(tv1[i, 3].text) Then
 tv1.Rows[i].Selected = True 'select the next Spending row that needs a
category
 tvCategories.SetFocus
 Return
 Endif
 Next
 tv1.SetFocus

End

Public Sub Calculate()

 Dim i, j, CategoryID As Integer
 Dim t, GrandTotal As Float
 Dim res As Result
 Dim s As String

105

 For i = 0 To tvCategories.Rows.Max 'every category
 If IsNull(tvCategories[i, 0].Text) Then Continue
 CategoryID = tvCategories[i, 0].Text
 Try Res = fdb.Exec("SELECT Total(Amount) AS TotalAmount FROM Spending
WHERE Category=" & CategoryID)
 If Error Then
 Message("Couldn't total

" & Error.Text)
 Continue
 Endif
 While res.Available
 t = res!TotalAmount
 GrandTotal += t
 If t = 0 Then tvCategories[i, 1].Text = "" Else tvCategories[i, 1].Text
= Format(t, "##0.00")
 res.MoveNext
 Wend
 Next
 If GrandTotal = 0 Then Return
 For i = 0 To tvCategories.Rows.Max
 s = tvCategories[i, 1].Text
 If Not IsNull(s) And If Val(s) > 0 Then tvCategories[i, 2].Text =
Format(100 * Val(s) / GrandTotal, "##0.##") Else tvCategories[i, 2].Text = ""
 Next
 tbDone.Text = Format(GrandTotal, "##0.00")
 labSpendingTotal.Text = tbDone.Text
 labCategoriesTotal.Text = SumTheCategories()
 If Not IsNull(tbTarget.text) Then
 tbToDo.Text = Format(Val(tbTarget.Text) - GrandTotal, "##0.00")
 tbDistribute.Text = tbToDo.Text
 Endif

End

Public Sub SaveCategoriesTable()
 For i As Integer = 0 To tvCategories.Rows.Max
 SaveCategoryLine(i)
 Next
End

Public Sub SaveCategoryLine(i As Integer) 'i is the line number

 Dim RecID As Integer
 Dim t, pct As Float
 Dim s, CategoryName As String
 Dim res As Result

 RecID = Val(tvCategories[i, 0].Text)
 CategoryName = tvCategories[i, 3].Text
 t = If(IsNull(tvCategories[i, 1].Text), 0, Val(tvCategories[i, 1].Text))
 s = tvCategories[i, 2].Text
 pct = If(IsNull(s), 0, Val(s))
 If IsNull(RecID) Then 'new record needed
 res = fdb.Exec("SELECT Max(CatID) AS MaxCatID FROM Categories")
 RecID = res!MaxCatID + 1
 SQL = "INSERT INTO Categories(CatID,Category) VALUES(" & RecID & "," &
CategoryName & ")"
 fdb.Exec(SQL)
 If Error Then

106

 Message("Couldn't insert a new record

" & SQL & "

" &
Error.text)
 Return
 Endif
 Else
 SQL = "UPDATE Categories SET Category='" & CategoryName & "' WHERE CatID="
& RecID
 Try fdb.Exec(SQL)
 'before checking Error, don't forget to use TRY. Otherwise Error will be
set and you'll seem to have an error when you don't
 If Error Then
 Message("Couldn't update a record

" & SQL & "

" &
Error.text)
 Return
 Endif
 Endif

End

Public Sub SumTheCategories() As String

 Dim t As Float
 Dim s As String

 For i As Integer = 0 To tvCategories.Rows.Max
 s = tvCategories[i, 1].Text
 If Not IsNull(s) Then t += Val(s)
 Next
 Return Format(t, "##0.00")

End

Public Sub SumTheSpending() As String

 Dim t As Float
 Dim s As String
 For i As Integer = 0 To tv1.Rows.Max
 s = tv1[i, 2].Text
 If Not IsNull(s) Then t += Val(s)
 Next
 Return Format(t, "##0.00")

End

Public Sub MenuCalculate_Click()
 Calculate
End

Public Sub tbTarget_LostFocus()

 If Not IsNull(tbTarget.text) Then tbTarget.Text = Format(Val(tbTarget.Text),
"##0.00") Else tbTarget.Text = ""
 Calculate

End

Public Sub tbTarget_KeyPress()
 If Key.Code = Key.Enter Or Key.Code = Key.Return Then FMain.SetFocus
End

107

Public Sub bDistribute_Click()

 Dim t, pct, y, z As Float

 If IsNull(tbDistribute.Text) Then Return
 Dim x As Float = Val(tbDistribute.Text)
 For i As Integer = 0 To tvCategories.Rows.Max
 If IsNull(tvCategories[i, 1].Text) Then Continue
 If IsNull(tvCategories[i, 2].Text) Then Continue
 t = Val(tvCategories[i, 1].Text)
 pct = Val(tvCategories[i, 2].Text)
 y = t + pct / 100 * x
 z += y 'running total
 If y = 0 Then tvCategories[i, 1].Text = "" Else tvCategories[i, 1].Text =
Format(y, "##0.00")
 SaveCategoryLine(i)
 Next
 labCategoriesTotal.text = Format(z, "##0.00")
 FMain.SetFocus

End

Public Sub tbDistribute_LostFocus() 'when leaving, fix the appearance

 If Not IsNull(tbDistribute.text) Then tbDistribute.Text =
Format(Val(tbDistribute.Text), "##0.00") Else tbDistribute.Text = ""

End

Public Sub tbDistribute_KeyPress() 'enter leaves the textbox
 If Key.Code = Key.Enter Or Key.Code = Key.Return Then FMain.SetFocus
End

Public Sub MenuDefaultCategories_Click()

 Try fdb.Exec("DELETE FROM Categories") 'it might be already cleared
 tvCategories.Rows.Count = 9
 tvCategories.Clear
 Dim s As String
 For i As Integer = 0 To 8
 s = Choose(i + 1, "Provisions", "Travel", "Medical", "Donations", "Papers
etc", "Clothes", "Personal", "Phone", "Repairs")
 tvCategories[i, 3].text = s
 tvCategories[i, 0].text = i + 1
 SQL = "INSERT INTO Categories(CatID,Category) VALUES(" & Str(i + 1) & ",'"
& s & "')"
 Try fdb.Exec(SQL)
 If Error Then Message("Couldn't insert a new record in the categories
table.

" & SQL & "

" & Error.Text)
 Next
 labCategoriesTotal.text = ""

End

Public Sub MenuRound_Click()

 Dim s As String
 Dim x, t As Float

 For i As Integer = 0 To tvCategories.Rows.Max

108

 s = tvCategories[i, 1].Text
 If IsNull(s) Then
 tvCategories[i, 1].Text = ""
 Else
 x = Round(Val(s))
 t = t + x
 tvCategories[i, 1].Text = x
 Endif
 Next
 labCategoriesTotal.Text = Format(t, "##0.00")
 For i As Integer = 0 To tvCategories.Rows.Max
 s = tvCategories[i, 2].Text
 If Not IsNull(s) Then tvCategories[i, 2].Text = Round(Val(s))
 Next

End

Public Sub MenuOpen_Click()
 OpenDatabase(Null, Null)
End

Public Sub MenuNewDatabase_Click()
 NewDatabase
End

Public Sub MenuNewSpending_Click()
 NewSpending
End

Public Sub MenuNewCategory_Click()
 NewCategory
End

Public Sub MenuQuit_Click()
 Quit
End

Public Sub MenuCopy_Click()
 Dim s, z As String
 Dim i, j As Integer

 For i = 0 To tv1.Rows.Max
 s = tv1[i, 1].Text
 For j = 2 To 4
 s &= gb.Tab & tv1[i, j].Text
 Next
 z &= If(IsNull(z), "", gb.NewLine) & s
 Next
 z &= gb.NewLine
 For i = 0 To tvCategories.Rows.Max
 s = tvCategories[i, 1].Text
 For j = 2 To 3
 s &= gb.Tab & tvCategories[i, j].Text
 Next
 z &= If(IsNull(z), "", gb.NewLine) & s
 Next
 z &= gb.NewLine & gb.NewLine & "Total Withdrawn: " & tbTarget.Text & gb.tab
& " = Total Accounted For: " & tbDone.Text & gb.tab & " + Cash on hand: " &
tbToDo.Text
 Clipboard.Copy(z)

109

End

Public Sub MenuShowHelp_Click()

 Help.ShowModal

End

Public Sub MenuClearCategory_Click()

 Dim RecID As Integer = tv1[tv1.row, 0].Text

 fdb.Exec("UPDATE Spending Set Category=' ' WHERE SpendingID=" & RecID)
 tv1[tv1.row, 3].Text = "" 'Cat text
 tv1[tv1.row, 5].Text = "" 'Cat ID
 Calculate

End

Public Sub MenuUnselectAll_Click()

 tv1.Rows.UnSelectAll
 tvCategories.Rows.UnSelectAll

End

SQL Statements

Some of these statements are used as they appear. Others are a string that is built up from parts. You
might see SQL = … . Bits of the statement are SQL and the field name might be added to it in the
right place and be stored in a variable, for example. Or perhaps the record ID might be in a variable
called RecID. Use single quotes in the string that is sent to SQLite. Use double quotes when
assembling the statement in Gambas.

SELECT * FROM Spending Select everything from the Spending table

SELECT * FROM Categories Select everything from the Categories table

SELECT MAX(CatID) as 'TheMax' FROM Categories Get the highest CatID from the Categories table and
call it “TheMax”.

INSERT INTO Categories(CatID,Category)
VALUES(123,'Entertainment')

Create a new record in the Categories table.
Put 123 into the CatID field and Entertainment into
the Category field.

UPDATE Categories SET Category = 'Entertainment'
WHERE CatID='123'

The Categories table has to be updated.
In the record with CatID equal to 123, put
Entertainment in the Category field.

SELECT MAX(SpendingID) as 'TheMax' FROM
Spending

Find the biggest SpendingID in the Spending table
and call it “TheMax”.

INSERT INTO
Spending(SpendingID,TransDate,Amount,Category,Co
mment) VALUES('123',' ',' ',' ',' ')

Create a new record in the Spending table.
SpendingID = 123
TransDate = a blank

110

Amount = a blank
Category = a blank
Comment = a blank

UPDATE Spending SET TransDate = '4-11-2019'
WHERE SpendingID='123'

Put “4-11-2019” into the TransDate field of the
record in the Spending table that has a SpendingID
of 123.

DELETE FROM Spending WHERE SpendingID='123' Delete the record in the Spending table that has a
record ID of 123.

DELETE FROM Categories WHERE CatID='123' Delete the record in the Categories table that has a
record ID of 123.

DELETE FROM Spending Delete every record from the Spending table. All the
data disappears, never to be seen again.

DELETE FROM Categories Delete every record from the Categories table. All
the category records, gone forever.

SELECT Category FROM Categories WHERE
CatID=123

Give me the name of the category that goes with the
CatID record number 123.

UPDATE Spending SET Category='4' WHERE
SpendingID='123'

Set the Category field of record 123 of the
Spending table to 4. This spending item goes into
the fourth category, whatever that is. To find out
what the fourth category is, look up the Categories
table and find the record with CatID=4

SELECT Total(Amount) AS TotalAmount FROM
Spending WHERE Category='4'

Get the sum of all the numbers in the Amount fields
of all the records in the Spending table that have 4
in their Category field. Simply, add up all the
amounts spent in category 4. Call the answer
“TotalAmount”

SELECT Max(CatID) AS MaxCatID FROM Categories Get the highest CatID from the Categories table.
Call it MaxCatID.

SQL = "INSERT INTO Categories(CatID,Category)
VALUES(4,Travel)"

Create a new Categories record. Set the CatID field
equal to 4 and the Category to “Travel”.

UPDATE Categories SET Category='Travel' WHERE
CatID=4

Update the Categories record that has a record ID of
4. Put “Travel” into the Category field.

UPDATE Spending Set Category=' ' WHERE
SpendingID=123

Put a blank into the Category field of Spending
record 123

The statements are either SELECT, INSERT, DELETE or UPDATE.

The patterns are:

SELECT fields FROM table

SELECT fields FROM table WHERE field = something

SELECT * FROM table

SELECT Total(field) AS nameForIt FROM table

SELECT Max(field) AS nameForIt FROM table

111

INSERT INTO table(fields) VALUES(values)

DELETE FROM table

DELETE FROM table WHERE field = something

UPDATE table SET field = something WHERE keyfield = something

These are not the only SQL statements: there are many more. They are enough to get a working
knowledge of SQL. Online help for SQLite can be found at

http://www.sqlitetutorial.net/

https://www.tutorialspoint.com/sqlite/

http://sqlitetutorials.com/

https://www.w3schools.com/sql/

A most important point about using the UPDATE statement:

Be careful when updating records.
If you omit the WHERE clause, ALL records will be updated!

For example, do not write this: UPDATE Spending SET Amount=12.50 .This puts 12.50 into the
Amount field of every record. All amounts become 12.50. You should say UPDATE Spending SET
Amount=12.50 WHERE SpendingID=42 .

Printing

When practising printing, printing “to a file” will save paper. You can open the resulting PDF
(Portable Document Format) file in your favourite PDF reader, such as Okular, and see on screen
what you would get on paper.

This is about the simplest demonstration of printing. In your program you need a “printer”. We have
used objects like buttons and tableviews. You can see them. A printer, though, is invisible. There is a
printer class, just as there is a button class. You drag a printer onto your form just the same as you
would drag a button or any other object. On the form it looks like a printer, but when the program
runs it cannot be seen. It is really just a lump of code that is built into Gambas and does the things
that printers are supposed to do, namely print and look after page sizes and orientation and so on.
Printer is a clever little object.

First you tell your Printer object to configure, then you tell it to print. (“Printer, print!”, or as we
write it in Gambas, prn1.print). When you tell it to print it will issue the Draw event. In the draw
event you put things on the page that you want printed. You do this with all the abilities that another
class has, the Paint class. The Paint class can put things onto the page for printing, but it has other
uses too, such as painting into DrawingAreas or ScrollAreas on the form. Right: here we go!

112

https://www.w3schools.com/sql/
http://sqlitetutorials.com/
https://www.tutorialspoint.com/sqlite/
http://www.sqlitetutorial.net/

Printing Some Plain Text

This small form has a Printer object and a button called bPlainPrint.

Public SimpleText As String

Public Sub Form_Open()

 SimpleText = "Countries of the World

Papua New Guinea

Papua
New Guinea is a country that is north of Australia. It has much green
rainforest. It has beautiful blue seas. Its capital, located along its
southeastern coast, is Port Moresby.

This is plain text in Linux
Libertine 12 point.

John Smith, editor"

End

Public Sub pr1_Draw()
 Paint.Font = Font["Linux Libertine,12"]
 Paint.DrawRichText(SimpleText, 960, 960, Paint.Width - 2 * 960)
End

Public Sub bPrintPlain_Click()
 If pr1.Configure() Then Return 'if user clicks Cancel, don't continue
 pr1.Print
End

When the form opens, some text is put in a variable called SimpleText for printing.

When the button is clicked the printer pr1 is told to configure itself. If the user clicks the Cancel
button this returns the value of True, so we should do nothing more. Otherwise, dear friendly printer
object, please print.

113

The printer object pr1 sends us the Draw event. It is saying, “I want to draw something! Please tell
me what to paint on the page!”. We oblige by saying

Paint.Font = Font["Linux Libertine,12"]
Paint.DrawRichText(SimpleText, 960, 960, Paint.Width - 2 * 960)

Paint.Font is a property describing the font. It is a property with parts to it. We assemble those parts
using Font[something]. The something is a string. For example, Font["Bitstream Vera Serif,Bold,24"]
means “assemble a font that is Bitstream Vera Serif, bold, 24 point”. That is put in the Font property
of the Paint thing. Actually the Paint thing is just a collection of skills. It is nothing you can see. It
is another invisible class. Be careful not to put spaces in that string unless part of the font name.
Gambas Help warns you of this. No spaces either side of the commas!

Paint.DrawRichText(something) is one of paint’s skills. It is a method it knows how to do. It needs
at least three things in brackets. It can take a few more. Here we have four “arguments”, or “things
in brackets”. First item: what to print. Second item: how far across to begin printing. Third item:
how far down to begin printing. The 960 will give an inch margin. 96 dots per inch is a typical
default printer resolution. The number is “tenths of a dot”. (I hope I have that right.) Fourth item:
how wide is my printing going to be? Answer: the full width that Paint will allow less an inch on
the left and an inch on the right. Each inch is 960. Take away two of them.

 means “break”, which goes to the next line.

 means go to a new line, then go to a
new line again. It gives us a blank line.

Rich Text understands
. It also understands quite a few other symbols planted in the text.
There are symbols to make it print using “Heading 1” style, and “Heading 2” and so on. You cannot
change what these styles look like, though. They are built in and that is that. You can also change
fonts and print size and colour anywhere in your text. These codes make the print come out a
certain way. In fact, it is a language in itself: HyperText Markup Language, or HTML. For example,
to switch on Bold, put in this tag: . When you want to switch Bold off, put in this one: .

Printing Rich Text (with HTML tags in it)

Instead of PlainText, get this to print:

FancyText = "<h3>Countries of the World</h3><Small>Papua New
Guinea</Small><hr>
Papua New Guinea is a country that is north of <font color =
#780373>Australia. It has much
green rainforest. It has beautiful blue
seas. Its capital, located along its southeastern coast, is <Font
Face=Times New Roman, Color=#FF0000>Port Moresby.

This is written in <font
face = Arial>HTML.
<p align = right><font face = Times New Roman,
Size=+1>John Smith, <i>editor</i></p>"

114

Incidentally, that text, if saved in a text file with the extension .html, will open and display in a web
browser, such as FireFox. You can try it.

The result will be:

I used Heading 3 (<h3> … </h3>) because Heading 1 was gross.

There are many tags in the text to make it look like that. Gambas allows these tags. It is only a
small selection from the full HTML. Save a document in HTML in your word processor, open it in a
text editor like Kate, and be amazed.

Tags that can be used in Rich Text

<h1>, <h2>, <h3>, <h4>, <h5>, <h6> → Headlines <sup> → Superscript

 → Bold font <small> → Small

<i> → Italic <p> → Paragraph

<s> → Crossed out
 → Line break

<u> → Underlined <a> → Link

<sub> → Subscript → Font

Examples to change text colour and align a paragraph:

 ... <p align=right> ... </p>

115

Print an Image on a Page

Print.Configure()

Drag a picture file onto the Data folder. Set the Picture property of the PictureBox to it.

The Printer is named pr1.

Public Pic As Picture

Public Sub pr1_Draw()
 Paint.DrawPicture(Pic, 960, 960, 3000, 3000)
End

Public Sub bPrint_Click()
 If pr1.Configure() Then Return 'if user clicks Cancel, don't continue
 Pic = PictureBox1.Picture
 pr1.Print
End

116

The picture is scaled to be 3000 x 3000. When I print to a file, the resolution is 96 dots per inch (96
dpi). The picture is printed 1 inch from the top and left margins and is scaled to fit into about 3
inches x 3 inches (3000x3000).

Print a Class List

In this program, 40 names are invented and put in an array called Z[]. If you were serious, the list of
names could be typed in by the user or loaded from a names file or obtained from a database.

The names are printed down the page. There needs to be a side margin, and here it is set to an inch
(960 dots when printing to PDF). It is stored in the variable (private property of the form)
SideMargin. It is the same on the left and the right. The top margin is TopMargin.

When you print a name, how far down do you go before printing the next? LineSpacing is set to
280. That works out at about 0.3 of an inch. (960 is an inch).

The plan is: Print a name. However long that name is, move along a bit. That is the starting point
for a horizontal line. Line as far as the page width less the right side margin. Draw the line. Go
down a linespacing. Print the next name. Draw its line. Go down. Print a name. Draw its line, and
so on.

Then draw the vertical lines to make the boxes. Start a little to the right of the width of the longest
name. Step 330 dots, draw a vertical line, step another 330 dots, draw the next line, and so on.

117

Don’t go past the end point of the horizontal lines. Finally, to make the right hand edge neat, draw a
final vertical line. The Printer is called Prn. The button is bPrint.

Private z As New String[]
Private LineSpacing As Integer = 280
Private TopMargin As Integer = 960
Private SideMargin As Integer = 960

Public Sub Prn_Draw()

 Dim s As String
 Dim i As Integer
 Dim NameWidth, HowFarDown, MaxNameWidth, MaxDistanceDown As Float
 Dim MaxWidth As Float = Paint.Width - 2 * SideMargin

 Paint.Font = Font["Linux Libertine,12"]
 Paint.Color(Color.Black)
 Paint.MoveTo(SideMargin, TopMargin) 'start here
 Paint.LineTo(Paint.Width - SideMargin, TopMargin) 'draw to here
 Paint.Stroke 'paint the top line
 For i = 0 To z.Max
 s = z[i]
 NameWidth = Paint.TextExtents(s).Width + 180 'gap at the end about 1/5
inch

118

 MaxNameWidth = Max(MaxNameWidth, NameWidth) 'remember the width of the
longest name
 HowFarDown = TopMargin + (LineSpacing * (i + 1))
 Paint.DrawText(s, SideMargin, HowFarDown)
 Paint.MoveTo(SideMargin + NameWidth, HowFarDown) 'starting position
 Paint.LineTo(Paint.Width - SideMargin, HowFarDown) 'finishing position
 Paint.Stroke 'draw the line
 Next
 MaxDistanceDown = TopMargin + z.Count * LineSpacing 'vertical lines go down
to here
 For i = SideMargin + MaxNameWidth + 100 To Paint.Width - SideMargin Step 330
'step across the page every 1/3 inch
 Paint.MoveTo(i, TopMargin)
 Paint.LineTo(i, MaxDistanceDown)
 Paint.Stroke
 Next
 Paint.MoveTo(Paint.Width - SideMargin, TopMargin)
 Paint.LineTo(Paint.Width - SideMargin, MaxDistanceDown)
 Paint.Stroke 'final line on right

End

Public Sub GetNames()

 Dim FN As String[] = ["Oliver", "Jack", "Harry", "Jacob", "Charlie",
"Thomas", "George", "Oscar", "James", "William", "Amelia", "Olivia", "Isla",
"Emily", "Poppy", "Ava", "Isabella", "Jessica", "Lily", "Sophie"]
 Dim SN As String[] = ["Smith", "Jones", "Williams", "Brown", "Wilson",
"Taylor", "Moreton", "White", "Martin", "Anderson", "Johnson", "Walsh",
"Miller", "Davis", "Burns", "Murphy", "Lee", "Roberts", "Singh", "Evans"]

 FN.Shuffle
 SN.Shuffle
 Dim i, n As Integer
 For i = 1 To 40
 z.Add(FN[n] & " " & SN[n])
 n += 1
 If n > FN.Max Then
 FN.Shuffle
 SN.Shuffle
 n = 0
 Endif
 Next

End

Public Sub bPrint_Click()

 Prn.OutputFile = User.Home &/ "Names.pdf" 'I'm printing to a pdf file
 If Prn.Configure() Then Return
 GetNames
 Prn.Print()

End

119

Print a Calendar

The form contains PictureBox1, a printer called Prn, and two buttons called bPicture and bPrint.

120

This program prints a calendar for the current month. When you look at the page you want to print
you will see the “things” that have to be printed in various places. There are three things that call for
repetition: the boxes, the numbers in the top left corner of each, and the names of the days of the
week.

I gave PictureBox1 a default picture (that shows as soon as the program is run). First I dragged a
photo onto the Data folder. Then I set the Picture property of the picturebox to it.

If you do not have a picture to begin with, the user needs to click the Choose Picture... button
before clicking Print. The picture is stored in a property called Pic. If it is null printing does not
proceed.

Public Pic As Picture

Public Sub LoadPicture()

 Dim Path As String

 Dialog.Title = "Please Select a picture"
 Dialog.Filter = ["*.jpg", "*.png", "Image Files", "*", "All files"]
 Dialog.Path = User.Home
 If Dialog.OpenFile() Then Return
 Pic = Picture.Load(Dialog.Path)
 PictureBox1.Picture = Pic

End

Public Sub bPicture_Click()
 LoadPicture
 FMain.SetFocus
End

Public Sub bPrint_Click()

 Pic = PictureBox1.Picture 'This line can be deleted if you don't give your
PictureBox a default picture.
 If IsNull(Pic) Then
 Message("Please select a photo first.")
 Else
 Prn.OutputFile = User.Home &/ "Calendar.pdf"
 If Prn.Configure() Then Return
 Prn.Print
 Endif

End

Public Sub Prn_Draw()

 Dim LeftMargin As Float = 480 'half inch
 Dim TopMargin As Float = 1200 'inch and a bit
 Dim row, col, DayNum, CellNum As Integer
 Dim s As String
 Dim ThisMonth As Integer = Month(Date(Now)) 'the month number of the date
part of the NOW function; 1 to 12
 Dim ThisYear As Integer = Year(Date(Now)) 'current year
 Dim FirstOfMonth As Date = Date(ThisYear, ThisMonth, 1)

121

 Dim StartDay As Integer = WeekDay(Date(FirstOfMonth)) 'the weekday of the
first of the month
 Dim TextHeight, TextWidth, GridTop As Float

 GridTop = 7.2 * 960

 'Big Photo
 Paint.DrawPicture(Pic, LeftMargin, TopMargin / 2, Paint.Width - 2 *
LeftMargin, 5 * 960) '5 inch height

 'Month and Year title
 Paint.Font = Font["Copperplate33bc,32"]
 TextHeight = Paint.TextExtents("S").Height 'the height of a character
 s = Choose(ThisMonth, "January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December") & "
" & ThisYear
 Paint.DrawText(s, 0, GridTop - 1000, Paint.Width, TextHeight, Align.Center)
'inch above grid top

 'Grid
 Dim Side As Float = (Paint.Width - 2 * LeftMargin) / 7 'one-seventh of the
width between margins
 For row = 0 To 4
 For col = 0 To 6
 Paint.DrawRect(LeftMargin + Side * Col, GridTop + Side * Row, Side,
Side, Color.Black) 'each square
 Next
 Next

 'Days of the Week headings
 Paint.Font = Font["Apple Chancery,12"]
 TextHeight = Paint.TextExtents("S").Height 'the height of a character
 For col = 0 To 7
 s = Choose(col + 1, "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday")
 Paint.DrawText(s, LeftMargin + Side * Col, GridTop - TextHeight - 96,
Side, TextHeight, Align.Center)
 Next

 'Dates
 Dim DaysInMonth As Integer
 If ThisYear Mod 4 = 0 And ThisMonth = 2 Then DaysInMonth = 29 Else
DaysInMonth = Choose(ThisMonth, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30,
31)
 Paint.Font = Font["Linux Libertine,20"]
 TextHeight = Paint.TextExtents("1").Height 'the height of a digit
 For row = 0 To 4
 For col = 0 To 6
 CellNum = 7 * row + col
 If CellNum >= StartDay Then
 DayNum += 1
 If DayNum > DaysInMonth Then Return 'Don't go to 35 days in the month!
 s = If(Col = 0, "" & DayNum & "", "<font
color=#000000>" & DayNum & "")
 Paint.DrawRichText(s, LeftMargin + Side * Col + 96, GridTop + Side *
Row + TextHeight + 96)
 Endif
 Next
 Next
 Row = 0

122

 Col = 0
 While DayNum < DaysInMonth 'Put extra dates up in the top left of the grid.
 DayNum += 1
 s = If(Col = 0, "" & DayNum & "", "<font
color=#000000>" & DayNum & "")
 Paint.DrawRichText(s, LeftMargin + Side * Col + 96, GridTop + Side * Row +
TextHeight + 96)
 Col += 1 'next column
 Wend

End

Design a Notebook Tray Icon

The idea for this program is simple: whatever text you have on the clipboard, click on a handy little
tray icon and it will be saved to an SQLite database. Nothing seems to happen, but the text is saved
in a new record.

There is also the means to search for notes already saved. This is done in a window that appears
when you middle-click the tray icon. I would have preferred it to appear on right-clicking the icon,
but right-clicking can only make a menu appear. That is what right-clicks do: they show contextual
menus. Now, middle-clicking is fine if you have a mouse with a middle wheel or button that can be
clicked. For those of us who use a laptop’s trackpad, middle-clicking is simulated by clicking both
left and right buttons simultaneously. On KDE there is an option in System Settings that can disable
this, but by default it is enabled.

A strange and curious thing occurs when you middle-click for the first time: nothing. The second
middle-click makes the window appear. I do not know why this happens, but when experimenting
with the tray icon menu that can appear when you right-click if you set up a menu and handle the
right-click event, the same thing happened. It needed two right-clicks for the menu to appear. I have
mentally filed it under Gambas, Strange and Curious Things.

Experiment with the main window being hidden when the application starts if you like, or not the
skiptaskbar property so the minimised main window does not get listed with the other open
applications in the panel, but the effects did not appeal at all so they have been left at their defaults.

Slightly disappointing was not finding a way to autostart this Gambas program when the computer
starts up. I have a widget on the panel to the compiled program, and it is only a simple click to get it
going, but the usual KDE autostart process was unable to get it going.

I found a nice notebook icon with a Google image search:

It does not need to be any particular size. It scales itself nicely when the program runs.

123

The window has a large text area to show a note, and a textbox at the top left in which to type
search text. There are also three labels that display the date/time when the note was saved, the
position of the note among all the notes that have been found with that search text in them, and, for
interest, the record ID of the note.

124

The tray icon (bottom left corner) can be placed anywhere. It does not appear in the window. It
appears in the system tray (usually at the bottom right corner of the screen, in KDE’s default panel).

The tray icon comes in its own component, so check Project > Properties to see that it and the
database components are included:

In summary, to use this notebook:

1. Copy any text to the clipboard.

2. Click the tray icon and your text is saved.

3. Click the tray icon with both left and right mouse buttons at the same time to search for a note.

125

Sometimes it is useful to save the text then bring up the window and add some key words that will
help you find the note again. I sometimes add the words JOKE or QUOTE or FAMILY HISTORY.
That way, by typing “QUOTE” in the search box, all my quotes appear and I can step through them
one at a time. Copying all selected notes would be a useful feature to add.

The SQL select statement appears in the window caption, for interest.

For good measure, a TEXT menu has four entries for adjusting text:

Type Extra… positions the cursor at the end of the text of the visible note, ready for you to type
something extra.

Tidy gets rid of multiple spaces, multiple tabs and multiple blank lines, and removes leading and
trailing spaces.

Sentences joins broken sentences. Text copied from emails often has distinct lines.

Double-space separates the paragraphs with a blank line.

These text operations work on the whole of the text if there is no selection, or on the selected text if
there is a selection. The shortcuts are there because often I find myself doing the last three in quick
succession to get the text looking decent.

The other menus are:

The database is an SQLite file. You might wonder where the OPEN and NEW menu items are. For
simplicity, the program creates a new database when it opens if none exists with the name and in the
place it expects to find it. It is called Notebook.sqlite and it is in the Home directory. It is easy
enough to change the code to make it in the Documents directory if you wish.

126

File > Backup is a useful menuitem that copies the database file to a Backups folder in the
Documents folder, date-stamping the file name to show when it was created and to not interfere
with earlier backups.

File > Renumber makes the record ID’s sequential, with no gaps. It, and the Vacuum item below it,
are unnecessary. Vacuum tidies the internal structure of the database file. It uses SQLite’s inbuilt
vacuum command.

File > Quit closes the application. File > Hide makes the window invisible. Clicking the close box
on the window also only hides the window; it does not close the application. For this trick, the
window’s Persistent property is set to true. The window persists, invisibly, when its close box is
clicked.

When you type in the search textbox an SQL Select statement selects all the notes that contain that
text. It is a simple search: it does not search for notes containing any of the words, ordered from
best to least matching. It searches for exactly the text that is typed. As you type each letter the
search is performed. A public property in the mdb module, Public rs As Result, stores the results of
the search. Notes > Show All clears the search and finds all the notes. This happens when the
program starts: all notes are selected.

Notes > New… lets you type a new note that is saved when you leave the text area.

Notes > Delete deletes the note currently displayed from the database.

Notes > Clear All clears all notes from the database. There is no undo but there is a chance to bail.

Window properties are:

Arrangement = Vertical
Stacking = Above
Width = 800
Height = 500

The Tray Icon (ti1) properties that need to be set are:

Tooltip = Click to save clipboard text
Visible = True

Be sure to set it to visible or you will not see the tray icon when the program is run, and there will
be no elegant way of quitting the program when it is running after you hide the window that shows
initially.

The Stacking property ensures that the window remains above other windows. If you click in the
window belonging to your web browser, for example, the Notebook window does not get covered
by the browser window but remains on top, floating above it. This can be useful for utility type
programs.

The last thing to note before getting to the code is the use of the keyboard’s arrow keys. UP and
DOWN take you to the first and last of the found notes respectively. LEFT and RIGHT step you

127

back or forwards through the found notes. “Found notes” means those that are found to have the
string of text in them that you typed in the textbox, or, if nothing has been typed, all the notes.

A few comments follow the code.

Code relating to the database is collected in a module called mdb:

' Gambas module file

Public db1 As New Connection
Public rs As Result
Public SQLSel As String

Public Sub CreateDatabase()

 db1.Type = "sqlite"
 db1.host = User.home
 db1.name = ""

 'delete an existing Notebook.sqlite
 If Exist(User.home & "/Notebook.sqlite") Then
 Kill User.home & "/Notebook.sqlite"
 Endif

 'create Notebook.sqlite
 db1.Open
 db1.Databases.Add("Notebook.sqlite")
 db1.Close

End

Public Sub ConnectDatabase()

 db1.Type = "sqlite"
 db1.host = User.home
 db1.name = "Notebook.sqlite"
 db1.Open
 SelectAllNotes
 'Message("Notes file connected:
" & db1.Host &/ db1.Name & "

" &
rs.Count & " records")

End

Public Sub MakeTable()

 Dim hTable As Table

 db1.name = "Notebook.sqlite"
 db1.Open
 hTable = db1.Tables.Add("Notes")
 hTable.Fields.Add("KeyID", db.Integer)
 hTable.Fields.Add("Created", db.Date)
 hTable.Fields.Add("Note", db.String)
 hTable.PrimaryKey = ["KeyID"]
 hTable.Update
 Message("Notes file created:
" & db1.Host &/ db1.Name)

End

Public Sub SelectAllNotes()

128

 rs = db1.Exec("SELECT * FROM Notes")
 FMain.Caption = "SELECT * FROM Notes"
 rs.MoveLast

End

Public Sub Massage(z As String) As String

 While InStr(z, "''") > 0 'this avoids a build-up of single apostrophes
 Replace(z, "''", "'")
 Wend
 Return Replace(z, "'", "''")

End

Public Sub AddRecord(s As String, t As Date) As String

 Dim rs1 As Result
 Dim NextID As Integer

 If rs.Max = -1 Then NextID = 1 Else NextID = db1.Exec("SELECT Max(KeyID) AS
TheMax FROM Notes")!TheMax + 1

 db1.Begin
 rs1 = db1.Create("Notes")
 rs1!KeyID = NextID
 rs1!Created = t 'time
 rs1!Note = Massage(s)
 rs1.Update
 db1.Commit
 SelectAllNotes
 Return NextID

Catch
 db1.Rollback
 Message.Error(Error.Text)

End

Public Sub UpdateRecord(RecNum As Integer, NewText As String)

 db1.Exec("UPDATE Notes SET Note='" & Massage(NewText) & "' WHERE KeyID=" &
RecNum)
 Dim pos As Integer = rs.Index
 'Refresh the result cursor, so the text in it is updated as well as in the
database file. This is tricky.
 If IsNull(SQLSel) Then rs = db.Exec("SELECT * FROM Notes") Else rs =
db.Exec(SQLSel) 'SQLSel is the last search, set by typing in tbSearch
 rs.MoveTo(pos) 'Ooooh yes! It did it.

Catch
 Message.Error("Update error.

" & Error.Text)

End

Public Sub MoveRecord(KeyCode As Integer) As Boolean

 If rs.Count = 0 Then Return False
 Select Case KeyCode

129

 Case Key.Left
 If rs.Index > 0 Then rs.MovePrevious Else rs.MoveLast
 Return True
 Case Key.Right
 If rs.Index < rs.Max Then rs.MoveNext Else rs.MoveFirst
 Return True
 Case Key.Up
 rs.MoveFirst
 Return True
 Case Key.Down
 rs.MoveLast
 Return True
 End Select
 Return False

End

Public Sub ClearAll()

 If Message.Warning("Delete all notes? This cannot be undone.", "Ok",
"Cancel") = 1 Then
 db1.Exec("DELETE FROM Notes")
 SelectAllNotes
 Endif

End

Public Sub DeleteRecord(RecNum As Integer)

 db1.Exec("DELETE FROM Notes WHERE KeyID='" & RecNum & "'")
 SelectAllNotes

End

Public Sub SearchFor(s As String)

 SQLSel = "SELECT * FROM Notes WHERE Note LIKE '%" & Massage(s) & "%'"

 If IsNull(s) Then
 SelectAllNotes
 SQLSel = ""
 Else
 FMain.Caption = SQLSel
 rs = db1.Exec(SQLSel)
 Endif

End

Public Sub Renumber()

 Dim res As Result = db.Exec("SELECT * FROM Notes ORDER BY KeyID")
 Dim i As Integer = 1
 Dim x As Integer

 Application.Busy += 1
 While res.Available
 x = res!KeyID
 db.Exec("UPDATE Notes SET KeyID=" & i & " WHERE KeyID=" & x)
 i += 1
 res.MoveNext

130

 Wend
 SelectAllNotes
 Application.Busy -= 1

End

Public Sub Vacuum() As String

 Dim fSize1, fSize2 As Float

 fSize1 = Stat(db1.Host &/ db1.Name).Size / 1000 'kB
 db1.Exec("Vacuum")
 fSize2 = Stat(db1.Host &/ db1.Name).Size / 1000 'kB
 Dim Units As String = "kB"
 If fSize1 > 1000 Then 'megabyte range
 fSize1 /= 1000
 fSize2 /= 1000
 Units = "MB"
 Endif
 Return Format(fSize1, "#.0") & Units & " -> " & Format(fSize2, "#.0") &
Units & " (" & Format(fSize1 - fSize2, "#.00") & Units & ")"

End

Public Sub Backup() As String

 If Not Exist(User.Home &/ "Documents/Backups/") Then Mkdir User.Home &/
"Documents/Backups"
 Dim fn As String = "Notebook " & Format(Now, "yyyy-mm-dd hh-nn")
 Dim source As String = db1.Host &/ db1.Name
 Dim dest As String = User.Home &/ "Documents/Backups/" & fn
 Try Copy source To dest
 If Error Then Return "Couldn't save -> " & Error.Text Else Return "Saved ->
/Documents/Backups/" & fn

End

The main form’s code, the code for the FMain class:

' Gambas class file

Public OriginalText As String

Public Sub ti1_Click()

 Dim TimeAdded As String

 If Clipboard.Type = Clipboard.Text Then TimeAdded =
mdb.AddRecord(Clipboard.Paste("text/plain"), Now())

End

Public Sub Form_Open()

 If Not Exist(User.Home &/ "Notebook.sqlite") Then 'create notebook data file
 mdb.CreateDatabase
 mdb.MakeTable
 mdb.SelectAllNotes
 Else

131

 mdb.ConnectDatabase
 ShowRecord
 Endif

End

Public Sub MenuQuit_Click()

 mdb.db1.Close
 ti1.Delete
 Quit

End

Public Sub Form_KeyPress()

 If mdb.MoveRecord(Key.Code) Then
 ShowRecord
 Stop Event
 Endif

End

Public Sub ShowRecord()

 If mdb.rs.count = 0 Then
 ClearFields
 Return
 Endif
 ta1.Text = Replace(mdb.rs!Note, "''", "'")
 Dim d As Date = mdb.rs!Created
 labTime.text = Format(d, gb.MediumDate) & " " & Format(d, gb.LongTime)
 labRecID.text = mdb.rs!KeyID
 labLocation.text = Str(mdb.rs.Index + 1) & "/" & mdb.rs.Count
 OriginalText = ta1.Text

End

Public Sub MenuClear_Click()

 mdb.ClearAll
 ClearFields
 labTime.Text = "No records"

End

Public Sub MenuCopy_Click()

 Clipboard.Copy(ta1.Text)

End

Public Sub MenuDeleteNote_Click()

 Dim RecNum As Integer = Val(labRecID.Text)

 mdb.DeleteRecord(RecNum) 'after which all records selected; now to
relocate...
 Dim res As Result = db.Exec("SELECT * FROM Notes WHERE KeyID<" & RecNum)
 res.MoveLast

132

 Dim i As Integer = res.Index
 mdb.rs.MoveTo(i)
 ShowRecord

End

Public Sub ClearFields()

 ta1.Text = ""
 labRecID.Text = ""
 labTime.Text = ""
 labLocation.Text = ""

End

Public Sub MenuNewNote_Click()

 ClearFields
 ta1.SetFocus

End

Public Sub ta1_GotFocus()

 OriginalText = ta1.Text

End

Public Sub ta1_LostFocus()

 If ta1.Text = OriginalText Then Return 'no change
 SaveOrUpdate

End

Public Sub tbSearch_Change()

 mdb.SearchFor(tbSearch.Text)
 ShowRecord

Catch
 Message.Error(Error.Text)

End

Public Sub ta1_KeyPress()

 If Key.Code = Key.Esc Then Me.SetFocus 'clear focus from textarea; this
triggers a record update

End

Public Sub tbSearch_KeyPress()

 If Key.Code = Key.Esc Then Me.SetFocus

End

Public Sub MenuShowAll_Click()

133

 mdb.SelectAllNotes
 ShowRecord

End

Public Sub KeepReplacing(InThis As String, LookFor As String, Becomes As
String) As String

 Dim z As String = InThis

 While InStr(z, LookFor) > 0
 z = Replace(z, LookFor, Becomes)
 Wend
 Return z

End

Public Sub SaveOrUpdate()

 If IsNull(labRecID.Text) Then 'new record
 If IsNull(ta1.Text) Then Return
 Dim d As Date = Now()
 labRecID.Text = mdb.AddRecord(ta1.Text, d)
 labTime.text = Format(d, gb.MediumDate) & " " & Format(d, gb.LongTime)
 Else 'update
 If IsNull(ta1.Text) Then
 mdb.DeleteRecord(Val(labRecID.Text))
 ClearFields 'maybe leave everything empty?
 Else
 mdb.UpdateRecord(Val(labRecID.Text), ta1.Text)
 Endif
 Endif

End

Public Sub MenuTidy_Click()

 OriginalText = ta1.Text
 If IsNull(ta1.Text) Then Return
 Dim z As String = If(ta1.Selection.Length = 0, Trim(ta1.Text),
Trim(ta1.Selection.Text))
 z = KeepReplacing(z, gb.NewLine, "|")
 z = KeepReplacing(z, gb.Tab & gb.Tab, gb.Tab)
 z = KeepReplacing(z, " ", " ")
 z = KeepReplacing(z, "| ", "|")
 z = KeepReplacing(z, "|" & gb.tab, "|")
 z = KeepReplacing(z, "||", "|")
 z = KeepReplacing(z, "|", gb.NewLine)
 If ta1.Selection.Length = 0 Then ta1.Text = z Else ta1.Selection.Text = z
 SaveOrUpdate

End

Public Sub MenuSentences_Click()

 OriginalText = ta1.Text
 If IsNull(ta1.Text) Then Return
 Dim z As String = If(ta1.Selection.Length = 0, Trim(ta1.Text),
Trim(ta1.Selection.Text))
 z = KeepReplacing(z, gb.NewLine, "~")

134

 z = KeepReplacing(z, "~ ", "~")
 z = KeepReplacing(z, ".~", "|")
 z = KeepReplacing(z, "~", " ")
 z = KeepReplacing(z, " ", " ")
 z = KeepReplacing(z, "|", "." & gb.NewLine)
 If ta1.Selection.Length = 0 Then ta1.Text = z Else ta1.Selection.Text = z
 SaveOrUpdate

End

Public Sub MenuUndo_Click()

 Dim z As String = ta1.Text

 ta1.Text = OriginalText
 OriginalText = z
 SaveOrUpdate

End

Public Sub MenuRenumber_Click()

 mdb.Renumber
 ShowRecord

End

Public Sub MenuVacuum_Click()

 Me.Caption = "File size -> " & mdb.Vacuum()

End

Public Sub MenuBackup_Click()

 Me.Caption = mdb.Backup()

End

Public Sub MenuTypeExtra_Click()

 ta1.SetFocus
 ta1.Text &= gb.NewLine & gb.NewLine
 ta1.Select(ta1.Text.Len)

End

Public Sub MenuDoubleSpace_Click()

 OriginalText = ta1.Text
 If IsNull(ta1.Text) Then Return
 Dim z As String = If(ta1.Selection.Length = 0, Trim(ta1.Text),
Trim(ta1.Selection.Text))
 z = KeepReplacing(z, gb.NewLine, "|")
 z = KeepReplacing(z, "||", "|")
 z = KeepReplacing(z, "|", gb.NewLine & gb.NewLine)
 If ta1.Selection.Length = 0 Then ta1.Text = z Else ta1.Selection.Text = z
 SaveOrUpdate

End

135

Public Sub ti1_MiddleClick()

 Me.Show
 Me.Activate
 tbSearch.Text = ""
 mdb.SelectAllNotes
 ShowRecord

End

Public Sub MenuHide_Click()

 Me.Hide

End

The Massage(string) function is necessary for handling the saving of text that has single
apostrophes in it. SQL statements use single apostrophes to surround strings. A single apostrophe in
the string will terminate the string and what follows will be a syntax error as it will be
incomprehensible. To include an apostrophe it has to be doubled. For example, to save the string
Fred’s house it has to first be converted (“massaged”) to Fred’’s house.

The KeepReplacing(InThis, LookFor, ReplaceWithThis) function performs replacements until the
LookFor string is no longer present. For example, if you wanted to remove multiple x’s from
abcxxxxdef and just have one single x you cannot just use Replace(“abcxxxxdef”, “xx”, “x”), for
this would produce abcxxdef. The first double-x becomes a single x, and the second double-x
becomes a single x. You still have a double-x. You have to keep replacing until there are no more
double-x’s.

That’s all, folks. May I finish where I began, with a word of thanks to Benoît Minisini. This
programming environment is a delight to use. With the gratitude of all of us users we sing, glass in
hand, “For he’s a jolly good fellow, and so say all of us”.

Thanks to https://tohtml.com/vbasic/ for highlighting the code.

Gerard Buzolic

25 September 2019

136

https://tohtml.com/vbasic/

Appendix 1

Did You Know? — From Gambas ONE

Shortcuts in Writing Code

Thanks to cogier, stevedee and jornmo on Gambas One. https://forum. Gambas .one/viewtopic.php?
f=4&t=489

Double-click a blank area of the form to start typing code for the Public Sub Form_Open() event.
Double-click a button to start typing code for Public Sub Button_Click(). Otherwise, right-click the
object or form > click EVENT… > choose the event you want to write code for.

Expansions

If you want to start writing a new sub, type ps<tab> and you will see already typed for you:

Public Sub Name(Arguments)

End

v<tab> is changed into Private $Var As Type

137

https://forum.gambas.one/viewtopic.php?f=4&t=489
https://forum.gambas.one/viewtopic.php?f=4&t=489
https://forum.gambas.one/viewtopic.php?f=4&t=489
https://forum.gambas.one/viewtopic.php?f=4&t=489

ds<tab>, df<tab> and di<tab> are changed into

Dim sVar As String

Dim fVar As Float

Dim iVar As Integer

Help

If you hold down the CTRL key and click on a Gambas reserved word (e.g. Public, New, For, etc)
the relevant help page is displayed. Selecting a keyword and pressing F2 also does it.

Right-click a tool in the toolbox and help will appear.

Declaring Variables

In preferences Ctrl-Alt-P, switch on Local variable declaration then in your empty 'Sub' type
iCount = 6 and a Dim iCount as Integer automatically appears.

Pausing and Looking at Variables

Breakpoint set on the Dim statement. SoccerPlayer has “Maradona” in it.

138

If the program is paused (you put in a “breakpoint” in a certain place in the code, and the execution
reached this place, or you click the Pause button) you can select a variable (drag over it, or double-
click it) and you will see its value.

Widen, Shorten and Move Things

If you select the width or height properties of a control, the up or down arrows increase or reduce it
by 7 pixels.

If you select the X property of a control, up-arrow moves right, down-arrow moves left by 7 pixels.
Similarly in the Y property value box, up-arrow moves down and down-arrow moves up (work that
one out) by 7 pixels.

If you want a line or selected lines of code to move up, click in the line and press Alt-UpArrow. Alt-
DownArrow moves it or them down.

Many Random Numbers

Dim siRand1, siRand2, siRand3, siRand4 As Short = Rand(0, 9)

This declares four short integer variables and puts a random digit between 0 and 9 into each.

Deleting a Whole Line of Code

Press Shift-Delete anywhere on the line.

Commenting and Uncommenting Lines of Code

Code is active on the left, commented out on the right.

Select the lines > Press Ctrl-K to “komment-out” the lines. Ctrl-U with lines selected will un-
comment them. (Commenting out means making them into comments so they are not executed.)

139

Non-Case-Sensitive Comparisons

Use a double equals sign to disregard case. For example, "Hello" == "HELLO" is true. "Hello" =
"HELLO" is false.

You can also use a function to compare two strings String.Comp("Hello", "HELLO", gb.IgnoreCase) =
0 . String.Comp("Hello", "HELLO") <> 0 is true.

140

Appendix 2

Functions Reference

String Functions

Character Codes

Asc Returns the ASCII code of a character Every character has an ASCII code, eg Asc("A")
is 65.

Chr Returns a character from its ASCII
code

Chr(65) is "A" . Chr(32) is the space. Chr(1) is
Ctrl-A

When checking to see if a key was pressed, use
Key["A"] or Key[Key.ShiftKey] instead for the
number of a key on the keyboard, rather than the
number of a character.

Parts of Strings

Left The left-hand end of a string Left("Hello", 4) is "Hell"

Mid
The “middle” part of a string

Mid(String, StartingAt, HowLong)

Mid("Gambas", 3, 2) is mb because that is the
string that starts at position 3 and is 2 characters
long.

Right The right-hand end of a string Right("String", 4) is "ring"

Find and Replace

InStr

The position of the second string in the
first

InStr(String, LookFor)

InStr(String, LookFor, StartingAt)

InStr("Gambas is basic", "bas") is 4, because bas
starts at position 4.

InStr("Gambas is basic", "bas", 6) is 11, because
InStr only starts looking for bas from position 6.

If the string is not found it returns 0.

InStr("Gambas is basic", "bas", -5) is 11. The -5
means only start looking five from the end until
the end, i.e. at position 10, the second space. Note
that the last letter, c, is not 1 from the end. It is the
end. i is 1 from the end.

Replace
The string with every occurrence of
something replaced by something else

Replace(String, LookFor, WithThis)

Replace("Abracadabra", "a", "*") is Abr*c*d*br*

Message(Replace(LetterText, "<name>",
FirstName&" "&LastName))

Subst A string with its markers replaced by Subst("Tell &1 to arrive at &2 PM", "Mark", "4")

141

other strings is
"Tell Mark to arrive at 4 PM"

Change Case

UCase Converts a string to uppercase. UCase("gerard") is "GERARD"

LCase The string converted to lower case LCase("GERARD") is "gerard"

Trimming

Trim A string with no spaces at either end Trim(" Hello ") is "Hello"

LTrim
Left Trim
The string with spaces removed from
the start

LTrim(" Hello") is "Hello"

RTrim
Right Trim
The string with spaces removed from
the end

RTrim("Hello ") is "Hello"

Building Strings

String
A string made of the same string
repeated many times.

String(HowMany, WhichString)

String(6, "*") is "******"

String(2, "Gambas") is "GambasGambas"

Space A string of spaces Space(8) is eight spaces

Quote
The string in quotation marks

The UnQuote function removes them.
Quote("Hello,") & " she said." is "Hello," she
said.

Miscellaneous

Len The length of a string Len("Gambas is basic") is 15

Comp

Compares two strings

Comp(FirstString, SecondString)

Comp(FirstString, SecondString, Mode)

If the two strings are the same, it returns 0.
If the first string comes after the second in a
dictionary, it returns +1
If the first string comes before the second it is -1

If Comp(UserName, "Akiti", gb.IgnoreCase) = 0
Then Message("Welcome Akiti!") else
Message("You’re not Akiti!")

Split
An array made from a string

Split(String, Separator)

Dim z As String[] =
Split("John,Mary,Paul,Gemma,Lucille,Hamish",
",")

The string is split at the commas.

142

Numeric Functions

Positives and Negatives

Abs Absolute value of a number — remove the negative sign if
any.

Abs(7) = 7

Abs(-7) = 7

Sgn Sign (+, 0, –) of a number

Sign(3.14) = +1

Sign(–6) = –1

Sign(0) = 0

To Whole Numbers

Int
Integer part of a number

Negative numbers are rounded down; positive numbers
abandon the fraction part.

Int(3.2) = 3

Int(3.9) = 3

Int(6) = 6

Int(-7.2) = -8

Int(-7.9) = -8

Round

Round a number to the nearest integer or power of ten

e.g. 10^2 is 100, so Round(x,2) is to the nearest 100.

Negative powers are how many decimal places

Round(Pi, -2) = 3.14

Print Round(1972, 2) = 2000

Frac
The fractional part of a number

The fractional part of a date is the time.

Frac(3.14) = 0.14

Frac(Date(1999, 12, 13, 14, 20, 00)) =
0.597222222015

CDate(Frac(Date(1999, 12, 13, 14, 20,
00))) = 14:20:00

Fix Integer part of a number—remove any fractional part
Fix(3.14) = 3

Fix(-3.14) = -3

CInt
Convert to an integer

Abandon the fraction part completely.

Int(3.2) = 3

Int(3.9) = 3

Int(6) = 6

Int(-7.2) = -7

Int(-7.9) = -7

Floor Round down to the next lowest whole number
Floor(3.14) = 3

Floor(-3.14) = -4

143

Ceil Ceiling: round up to the next highest whole number
Ceil(3.14) = 4

Ceil(-3.14) = 3

Comparing

Max
Whichever of two numbers is greater

Also works with dates
Max(6,4) = 6

Min
Whichever of two numbers is lesser

Also works with dates
Min(6,4) = 4

Increment and Decrement

INC
Increments a variable; same as x += 1 or x = x+1

This is an procedure rather than a function (no brackets;
it’s a verb, not a noun)

INC x

DEC
Decrement a variable; same as x –= 1 or x = x–1

This is an procedure rather than a function.
DEC x

Character Test Functions

The empty string is NULL. IsNull("") is True. IsNull("M") is False.

IsAscii Tests if a string contains only ASCII characters.

IsBlank Tests if a string contains only blank characters.

IsDigit Tests if a string contains only digits.

IsHexa Tests if a string contains only hexadecimal digits.

IsLCase Tests if a string contains only lowercase letters.

IsLetter Tests if a string contains only letters.

IsPunct Tests if a string contains only printable non-alphanumeric characters.

IsSpace Tests if a string contains only space characters.

IsUCase Tests if a string contains only uppercase letters.

Random Numbers

144

Randomize
Without it you get the same series of
random numbers each time your program
is run.

Randomize

Just the word by itself.

Rand A random integer between two numbers.
Rand(1,6) is a random number between 1 and
6 inclusively. This could be a dice throw.

Rand(1,2) is either a 1 or a 2.

Rnd A random floating point number.

Rnd() is between 0 and 1

Rnd(9) is between 0 and 9, but never 9 itself.

Rnd(10, 20) is between 10 and 20, but never
20.

Time And Date

A given date and time is stored internally as two integers, the first being the date and the second
being the time. The following examples may explain what you can do with dates and times.

Examples:

Now 07/08/2019 19:18:54.929
8 July 2019, almost 8:19 pm

The current date and time

Format(Now, "dddd dd/mm/yyyy
hh:nn:ss")

Tuesday 09/07/2019
20:45:13

More on Format() later. Use it to
present a date and/or time, or indeed
any number, in the way you want.
And it is now 8:46pm on July 9, by
the way.

Date() 07/07/2019 23:00:00 When today started, less one hour for
Daylight Saving Time.

Date(1955, 6, 1) 05/31/1955 23:00:00
Someone’s birthday, less one hour for
Daylight Saving Time. The date is
assembled from Year, Month, Day.

Date(2019, 12, 25, 6, 15, 0) 12/25/2019 05:15:00

6:15 am on Christmas Day, 2019.
Time for opening Christmas presents.

Year, Month, Day, Hours, Minutes,
Seconds

DateAdd(Date(1955, 6, 1), gb.Day, 14) 06/14/1955 23:00:00 14 days after 1 June 1955. DS again.

You can add other things besides
days:

gb.Second, gb.Minute, gb.Hour,
gb.Day, gb.Week, gb.WeekDay

145

(ignore Saturday and Sunday),
gb.Month, gb.Quarter, gb.Year

DateDiff(Date(2019, 7, 6), Date(Now),
gb.Day) 2 Days between two days ago and now

DateDiff(Date(Now), Date(2018, 12,
25), gb.Day) 195

How many days since Christmas?
(It’s now 2019. Last Xmas was
2018.)

DateDiff(RecentDate, PastDate,
Units)

DateDiff(Date(Now), Date(2019, 12,
25), gb.Day) 170 How many days until Christmas?

(It’s now 2019.)

DateDiff(Date(1955, 6, 1), Now,
gb.Second) 2022959392 How many seconds I have been alive

DateDiff(Date(1955, 6, 1), Now,
gb.Day) 23413 How many days I have been alive

CLong(DateDiff(Date(1955, 6, 1), Now,
gb.Minute)) * 72

2427551928 … no, wait,
it’s 2427552144 … no,
wait, it’s 2427552216 ...

How many heartbeats since my birth.

Had to convert the DateDiff to Long
Integer because without it there is an
overflow problem: it shows as a
negative number. Longs can hold
very big numbers.

Parts of Dates and Times

Hour(Now) & " hrs " & Minute(Now) & "
mins" 14 hrs 39 mins

It is now 2:39 pm.

You can also use these:

Day(), Hour(), Minute(), Month()

Second(), Time(), Week(), Weekday()

Year()

"Rip van Winkle, this is " & Year(Now) Rip van Winkle, this is
2019 The year part of a date

WeekDay(Now) 2
0 = Sunday, 6 = Saturday

2 means it is Tuesday.

If WeekDay(Now) = gb.Tuesday then
label1.text = "It is Tuesday." else
label1.text = "It is not Tuesday."

It is Tuesday. gb.Tuesday is a constant whose value
is 2. Using the constant means you
need not remember Tuesday is 2.

Others are gb.Monday,

146

gb.Wednesday, gb.Thursday,
gb.Friday, gb.Saturday and
gb.Sunday

Time(Now) 14:58:44.654 The time part of a date (Now is the
current date and time)

Time(14, 08, 25) 14:08:25
Assemble a time from its parts

Time(Hour, Minutes, Seconds)

Time() 15:05:09.515 The time right now

Conversions

Val("1/6/55") 05/31/1955 23:00:00
Converts the string to a date

The 1-hour difference is due to
daylight saving time.

Val("1/6/55 2:00") 06/01/1955 01:00:00
2 am on 1 June 1955

The 1-hour difference is due to
daylight saving time.

Val("1-6-55 2:00") nothing Very sensitive to the format…
ignored

Str(2484515) 2484515 If you supply a number, Str() will
convert that number to a string.

Dim D As Date = 2484515

label1.text = Str(D)
16/05/2002 01:00:00

The number has changed to a date.

Str() converts it into local date format

Dim D As Date = 2484515

label1.text = D
05/16/2002 United States date format

CDate("1-6-55 2:00") Error
“Wanted date, got string instead”

Not only sensitive, but offended!

147

Appendix 3

Constants

String constants

http:// Gambas wiki.org/wiki/cat/constant

gb.NewLine Newline character. This is Chr(10).

gb.Cr Carriage return character. This is Chr(13). The line terminator on old Macintoshs.

gb.Lf Linefeed character. This is Chr(10). The line terminator on Linux and new Macs.

gb.CrLf Carriage return followed by linefeed. The line terminator on Windows and network
protocols such as HTTP.

gb.Tab Tab character. This is Chr(9).

Sort Order

gb.Ascent Ascending sort (This is default).

gb.Descent Descending sort.

Alignment

Because these are part of the Align class, refer to these as Align.Center, Align.Left etc.

Bottom

BottomLeft

BottomNormal

BottomRight

Center

Justify

Left

Normal

Right

Top

TopLeft

TopNormal

TopRight

148

http://gambaswiki.org/wiki/cat/constant
http://gambaswiki.org/wiki/cat/constant
http://gambaswiki.org/wiki/cat/constant

Appendix 4

Operators

Arithmetic

http:// Gambas wiki.org/wiki/lang/arithop by example:

- 6

x = - x

Unary minus

Changes number to a negative
5 / 2 = 2.5 Divide

3 + 2 = 5 Add 3 ^ 2 = 9 Power of

7 – 4 = 3 Subtract
13 \ 2 = 6

13 DIV 2 = 6
Integer division

5 * 2 = 10 Multiply
12 % 7 = 5

12 MOD 7 = 5
Remainder after dividing

Boolean

Two things combined, or one thing operated on Overall Value Examples

SomethingTrue AND SomethingTrue True

(1=1) AND (2=2) is TRUE

(1<2) AND (5>4) is TRUE

Both have to be true to make the whole
thing true.

SomethingTrue AND SomethingFalse False
(1=1) AND (2=3) is FALSE

(6>5) AND (4<3) is FALSE

SomethingFalse AND SomethingTrue False (5=6) AND (4=4) is FALSE

SomethingFalse AND SomethingFalse False (5=6) AND (2=3) is FALSE

NOT SomethingTrue False

NOT (8=8) is FALSE

NOT (1 > -1) is FALSE

“Not” means “the opposite of”

NOT SomethingFalse True NOT (1=2) is TRUE

NOT ("apple" > "banana") is TRUE

149

http://gambaswiki.org/wiki/lang/arithop
http://gambaswiki.org/wiki/lang/arithop
http://gambaswiki.org/wiki/lang/arithop

i.e., the reverse of (a comes after b)

SomethingTrue OR SomethingTrue True
(1=1) OR (2=2) is TRUE

Either one being true will make the
whole thing true.

SomethingTrue OR SomethingFalse True (1=1) OR (2=3) is TRUE

SomethingFalse OR SomethingTrue True (7=3) OR (3=3) is TRUE

SomethingFalse OR SomethingFalse False (1=1) OR (2=3) is FALSE

SomethingTrue XOR SomethingTrue False (1=1) XOR (4=4) is FALSE

SomethingTrue XOR SomethingFalse True (1=1) XOR (4=5) is TRUE

SomethingFalse XOR SomethingTrue True (1=5) XOR (4=4) is TRUE

SomethingFalse XOR SomethingFalse False (1=2) XOR (4=5) is FALSE

AND = both

OR = either

XOR = either, but not both (“exclusive OR”)

String Operators

Joining (Concatenation)

String & String Concatenates two strings.

String &/ String

Concatenate two strings that contain file names. Add a path separator
between the two strings if necessary.

An example of a path is

/home/gerard/Documents/Gambas/

How to get it:

User.Home &/ "Documents" &/ "Gambas/"

Comparison

String = String Returns if two strings are equal.

String == String
Case-insensitive comparison

Returns if two strings are equal, regardless of upper or lower case

String LIKE String Checks if a string matches a pattern. Is the first string like the second?
There are special codes for the pattern string. Refer to the wiki for more

150

codes. http:// Gambas wiki.org/wiki/lang/like

* means any character or string of characters

"Gambas" Like "G*" means “Does Gambas begin with a G?”

? means any single character; [] means either/or the things in brackets:

"Gambas" Like "?[Aa]*" means “Does Gambas have a capital or small A
as its second letter?”

"Gambas" Like "G[^Aa]*" means “Does Gambas not have a capital or
small A as its second letter?”

Dim Fruit As String = "pear"

Label1.text = Fruit Like "{apple,pear,lemon}"

shows True, but

Label1.text = Fruit Like "{apple, pear, lemon}"

shows False because spaces matter.

String MATCH String

Checks if a string matches a PCRE regular expression. Refer to
http:// Gambas wiki.org/wiki/doc/pcre

PCRE means Perl Compatible Regular Expressions

Regular expressions are the ultimate in finding things in strings.

String BEGINS String
Checks if a string begins a certain way

"Gerard" Begins "G" means “Does Gerard begin with a G?”

String ENDS String
Checks if a string ends a certain way

"Benôit" Ends "t" means “Does Benôit end with a t?”

String <> String Does not equal, or “is not the same as”

String1 < String2 Does string1 come alphabetically before string2?

String1 > String2 Does string1 come alphabetically after string2?

String1 <= String2 Does string1 come alphabetically before, or is it the same as, string2?

String1 >= String2 Does string1 come alphabetically after, or is it the same as, string2?

151

http://gambaswiki.org/wiki/doc/pcre
http://gambaswiki.org/wiki/doc/pcre
http://gambaswiki.org/wiki/doc/pcre
http://gambaswiki.org/wiki/lang/like
http://gambaswiki.org/wiki/lang/like
http://gambaswiki.org/wiki/lang/like

Appendix 5

Data Types and Conversions

Data Types

One byte is the amount of memory required to store a single character such as the letter “A” or the
digit “1”. It is eight bits (1’s or 0’s, like little switches that are on or off, up or down). 8 bits = 1
byte. 4 bits = 1 nibble, but that one is not used much.

http:// Gambas wiki.org/wiki/lang/type

Description and Limits Default value Size in memory

Boolean True or false FALSE 1 byte

Byte 0 to 255 0 1 byte

Short -32,768 to +32,767 0 2 bytes

Integer -2,147,483,648 to +2,147,483,647 0 4 bytes

Long -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 0 8 bytes

Single Single precision 0.0 4 bytes

Float Floating point or double precision 0.0 8 bytes

Date Date and time, each stored in an
integer. NULL 8 bytes

String A variable length string of
characters. NULL

4 bytes on 32 bits
systems, 8 bytes on 64
bits systems

Variant Any datatype. NULL
12 bytes on 32 bits
systems, 16 bytes on 64
bits systems

Object Anonymous reference to any object. NULL
4 bytes on 32 bits
systems, 8 bytes on 64
bits systems.

Pointer A memory address. 0
4 bytes on 32 bits
systems, 8 bytes on 64
bits systems

152

http://gambaswiki.org/wiki/lang/type
http://gambaswiki.org/wiki/lang/type
http://gambaswiki.org/wiki/lang/type

Conversions

Some conversions are omitted. Many of these conversions are done automatically as required. For
example, these are fine without explicitly having to write the functions:

label1.text = 54.65

Dim d As Date = "09/06/1972 01:45:12"

Dim d As Date = 2484515 gives d the date 05/16/2002

CBool to a Boolean

An expression is false if it is
A false boolean
A zero number
A zero length string
A null date
A null object

CBool(0) is false
CBool(1) is true
CBool("Gambas") is true
CBool("") is false
CBool(Null) is false

0 → False Anything else → True

e.g. 6 is True; -4 is True; 3-(1+2) is False.

CDate to a Date
CDate("09/06/1972 01:45:12")

CDate(2484515)

CFloat or
CFlt to a Float

CFloat("+3.1416")

Cfloat("1.0E+3") is 1000

CInt or
CInteger to an Integer

CInt("17") is the number 17

CInt(True) is -1

CInt(Now) is 2490779

CInt(3.2) is 3

CInt(3.9) is 3

CInt(6) is 6

CInt(-7.2) is -7

CInt(-7.9) is -7

TRUE → -1 FALSE → 0

CStr or
CString

to a String CStr(-1972) is -1972

153

CStr(Now) is 05/16/2002 15:08:31

CStr(Pi) is 3.14159265359

Str a number or a date into a string
The opposite of Val()

Use Format() to have control of what form the
number or date takes.

Val a string into a number or a date

Conversion follows these steps until if finds
something it can convert:

Look for a date
Look for a long
Look for an integer
Look for a true or false
If none, return NULL.

IsNull(Val("Gambas")) is True

154

Appendix 6

Formatting

Formatting Numbers

Example: Label1.text = Format(123456.789, ",#.00") shows as 123,456.79

Format(123456.789) shows as if you used gb.Standard

http:// Gambas wiki.org/wiki/cat/constant

Formatting Constants

gb.Standard Uses gb.GeneralNumber for formatting numbers and gb.GeneralDate for
formatting dates and times.

gb.GeneralNumber Writes a number with twelve decimal digits. Uses scientific format if its
absolute value is lower than 10-4 (0.0001) or greater than 107 (1 million).

gb.Fixed Equivalent to "0.00"

gb.Percent Equivalent to "###%"

gb.Scientific Write a number with its exponent (power of ten) and eighteen decimal digits.

Symbols in the Format Strings

Symbols other than these print as they appear. For example, $ prints as is.

+ Print the sign of the number. Format(Pi, "+#.###") +3.142

- Print the sign of the number only if it is negative. Format(Pi, "-#.###") 3.142

Print a digit only if necessary.

One # before the decimal point is all that is
needed. After the decimal point, as many #’s as
you want decimal places.

Format(123.456789, "#.###") 123.457

0 Always print a digit, padding with a zero if
necessary. Format(24.5, "$#.00") $24.50

. Print the decimal point Format(123.456, "#.0") 123.5

, Separate the thousands Format(1234567890, "#,") 1,234,567,890

155

http://gambaswiki.org/wiki/cat/constant
http://gambaswiki.org/wiki/cat/constant
http://gambaswiki.org/wiki/cat/constant

Format(1234567890, ",#")

% Multiply the number by 100 and print a percent
sign. Format(0.25, "#%") 25%

E

This is Scientific Notation, which is
“Something-times-ten-to-the-power-of-something”.

“E” means “times ten to the power of...”

1.2E+3 means 1.200 with the decimal point moved
three places to the right (get bigger x 1000)

Negative numbers after the “E” mean move the
decimal point to the left.

Format(1234.5, "#.#E##")

Format(0.1234, "#.#E##")

1.2E+3

1.2E-1

$ The national currency symbol (according to the
country as set on your computer) Format(-1234.56, "$,#.###") -$1,234.56

$$ The international currency symbol (according to the
country as set on your computer) Format(-1234.56, "$$,#.###") -AUD 1,234.56

() Negative numbers represented with brackets,
which is what finance people use. Format(-123.4, "($$,#.00)") (AUD 123.40)

Formatting Dates

Example: Format(Now, gb.Standard) shows as 10/07/2019 21:07:26

Formatting Constants

gb.GeneralDate

Write a date only if the date and time value has
a date part, and write a time only if it has a date
part. Writes nothing for a null date or a short
time when there is no date, and writes the date
and time for all other cases.

Format(Now, gb.GeneralDate) is
10/07/2019 21:17:45

gb.Standard
Uses gb.GeneralNumber for formatting
numbers and gb.GeneralDate for formatting
dates and times.

10/07/2019 21:20:45

gb.LongDate Long date format Wednesday 10 July 2019

gb.MediumDate Medium date format 10 Jul 2019

gb.ShortDate Short date format 10/07/2019

gb.LongTime Long time format 21:22:35

156

gb.MediumTime Medium time format 09:23 PM

gb.ShortTime Short time format 21:23

Format String Symbols

Label1.text = Format(Now, "dddd dd/mm/yyyy hh:nn:ss") shows as Tuesday 09/07/2019 20:45:13

yy The year in two digits h The hour

yyyy The year in four digits hh The hour in two digits.

m The month n The minutes.

mm The month in two digits. nn The minutes in two digits

mmm Abbreviated month s The seconds

mmmm Full name of the month ss The seconds in two digits

d The day : The time separator

dd The day in two digits u A point and the milliseconds, if non-zero

ddd Abbreviated weekday uu A point and the milliseconds in three
digits.

dddd Full name of the weekday t The timezone alphabetic abbreviation

/ The date separator tt The timezone in HHMM format

AM/PM The AM or PM symbol

Formatting Currency

For the symbols in a format string, see above (numbers).

gb.Currency Uses the national currency symbol. Format(14.50, gb.Currency)
shows as $ 14.5

gb.International Uses the international currency symbol. Format(14.50, gb.International)
shows as AUD 14.5

157

Appendix 7

Operator Precedence

In an expression, which part gets worked out first, then which operations are worked out next?

For example, is 2 + 3 * 4 equal to 20 (+ first, * second) or is it 14 (* first, then +)? Multiplication
precedes addition, so the expression comes down to 14.

Rules:

Things are worked out before they are compared.

Anything in brackets is worked out first.

The highest priority is changing the sign (-) or reversing true/false with NOT.

Strings are joined before paths are assembled. (& is done before &/).

Powers are done before multiplication or division, which are done before addition or subtraction.

Where there are several operations and they all have the same precedence, the order is left to right
but it does not matter because 3 * (4 / 2) is the same as (3 * 4) / 2

Comparisons are worked out before they are ANDed, ORed or XORed with other comparisons.

Examples:

4 ^ 2 * 3 ^ 3 is the same as (4 ^ 2) * (3 ^ 3)

a > 10 AND a < 20 is the same as (a > 10) AND (a < 20)

4 * 2 + 3 * 3 is the same as (4 * 2) + (3 * 3)

4 + 2 = 5 + 1 is the same as (4 + 2) = (5 + 1)

158

Afterword

This book is the work of someone who has only picked up Gambas in the last six months. It began
as a Christmas holidays project. The only object-oriented programming experience I have had prior
to this is with Xojo, another delightful language in which to program, though, unlike Gambas,
commercial. Neither has this book been proof read, so there will be errors for sure. Programming is
about errors every step of the way. The sample programs have been tested and they work, but even
there something may have crept through that needs fixing.

My interest in computers began in 1974 while a student at a teachers college in Brisbane. At that
time I was one of a small group whom a lecturer invited to learn programming after hours from an
acoustic coupler. The telephone handset was fastened with rubber clips to a teletype and messages
went to and from from the University of Queensland computer, a massive thing with a whopping 20
megabytes of memory that could handle 64 remote users concurrently. After graduation I went on
staff in a primary school in north Queensland, and would often bike over to the secondary school to
check out the latest version of a computer language called MBASIC written by some young bloke
called Bill Gates.

That was in 1976 and the school was the first in the state to have a computer, a DEC-10. There were
no floppy disks in those days: it was all stored on paper tape. It was fascinating to type a command
(even the word made you feel powerful) on a keyboard and the paper tape writer somewhere else in
the room would punch out confetti from a zigzag strip of paper. It could be read by lights shining
through the small holes as they were pulled over the light sensors at the dazzling speed of 300
characters per second.

In one school a staff member couldn’t see what was difficult about using computers to print student
reports. “Can’t you just press the PRINT button?” Forty years on I am still writing PRINT buttons.
We all pursue the goal of finding the holy grail of programming: one button to rule them all, one
button to do everything. Programming has only ever been a hobby, though. That there are people
who write languages, database engines and operating systems is awe-inspiring. There are wizards
out there. They walk among us. They look like ordinary people.

With that background, can you forgive me for using i and j as names for integer variables? For those
who want to, there is http:// Gambas wiki.org/wiki/doc/naming where my agricultural standards can
be refined. For example,

Private $iLast As Integer
Private $sLast As String
Private $hEditor As Object
Private $sOldVal As String
Private $bFreeze As Boolean

Public Sub Form_Resize()

 Dim iWidth As Integer

159

http://gambaswiki.org/wiki/doc/naming
http://gambaswiki.org/wiki/doc/naming
http://gambaswiki.org/wiki/doc/naming

Another shortcoming in this book is a lack of introduction to many tools:

Look at them all. All this book provides are buttons, textboxes, labels, grid- and tableviews and
forms. The goodies remain in their boxes, unopened, under the Christmas tree. I may find out about
them myself someday. They certainly look exciting.

To the person learning Gambas and programming for the first time, good luck.

Thanks again, Benoît and all the writers on forums.

Gerard
Waterford, Ireland, 2019

160

	Contents
	Programming and its Grammar
	Objects, Subs and Events
	Names and Memories
	Properties and Kinds of Things (Classes)
	Comments

	Computers Can Do Three Things
	Memory Functions and Subs Preventing Errors
	Calculate Speed from Distance and Time

	Conditional Execution If...Then...Else Select...Case...
	Game of HiLo Key class and checking the keyboard
	Grading Student Marks Colouring Alternate Rows, colours, adding a Quit menu

	Repetition For...Next… Repeat...Until While...Wend
	Moving Button Animation
	TableView that adds up to 5 numbers
	TableView that adds numbers in a grid

	Arrays, Lists, Sorting and Shuffling
	Making a Table of Doubles, Squares and Square Roots Format a number
	Game of Moo Assignment Operators like += and &=

	Writing on the Hard Drive 1
	Saving and Opening Text Files
	Game of Animal Showing and Hiding Objects

	Expandable Forms (Automatic Arranging of Objects)
	A Spreadsheet to Average Student Marks

	Contextual Menus
	Character Codes and Keeping Time
	Game of Concentration

	Radio Buttons and Groups, Parents and Children
	Writing on the Hard Drive 2
	Saving Settings “Me”, Saving a colour, checkbox and tableview Coloured panels The If(…, …, …) function

	Modules and Classes
	Locate a Name in a List by Typing
	Properties, Methods, Events
	Static Classes
	Making a SearchBox class with a New Event Based on a TableView

	SQLite Databases
	Tables, Primary Keys, Loading the Database Component of Gambas
	Databases Can Do Four Things: Display(Access), Add, Delete and Modify Records
	Make a database with a single table and fill it with random numbers

	SQL — Structured Query Language
	Begin, Commit and Rollback
	Select, Insert Into, Delete From, Update
	* for All Fields
	WHERE clause for some records only
	ORDER BY clause to set the sort order
	A Cash Spending Application

	Printing
	Printer Object
	Print Some Plain Text

	HTML
	Print Some Rich Text

	Text and Images
	Print an image
	Print a Class List
	Print a calendar for the month

	Tray Item: Notebook
	Appendices
	Did You Know? — from Gambas ONE
	Functions Reference
	Constants
	Operators
	Data Types and Conversions
	Formatting
	Operator Precedence

	Afterword

	Programming Gambas from Zip
	Programming
	Break Complex Things into Parts
	Objects, Subs and Events
	Names and Putting Something into Something
	Properties and Kinds of Things
	Comments
	What Computers Can Do
	Memory

	Calculate Speed from Distance and Time
	If..Then..Else — Game of HiLo
	Select … Case … — Many Choices — Grading Student Marks
	A Nice Addition — Colour alternate rows
	Numbering Colours
	Adding a Quit Menu
	Repetition

	The Moving Button
	A Tableview That Adds Up To 5 Numbers
	Rich Text Tags

	A Tableview That Adds Every Number In The Table
	Arrays, Lists, Sorting and Shuffling
	Sorting alphabetically and Sorting Numerically
	Strings
	Arrays of Arrays

	Table of Doubles, Squares and Square Roots
	Format Function

	The Game of Moo
	Adding an “I Give Up” Feature
	Assignment Operators

	The Game of Animal
	Making Controls Expand When a Form is Resized
	A Spreadsheet to Average Student Marks
	Making Contextual Menus at Design Time

	Sorting a GridView or TableView
	Game of Concentration
	ASCII Codes
	Radio Buttons and Groups
	Add Settings Saving to the Radio Buttons
	Saving a colour, a checkbox and the contents of a TableView
	IF Function

	A SearchBox to Locate Names by Typing
	Modules and Classes
	Making a SearchBox Class
	Setting Up a Class

	SQLite Databases
	Including the Database Facility
	SQL — Structured Query Language
	Database with a Single Table, to be filled with Random Numbers
	A Cash Spending Application
	Hidden Columns
	List the Jobs
	SQL Statements

	Printing
	Printing Some Plain Text
	Printing Rich Text (with HTML tags in it)
	Tags that can be used in Rich Text
	Examples to change text colour and align a paragraph:

	Print an Image on a Page
	Print a Class List
	Print a Calendar
	Design a Notebook Tray Icon
	Appendix 1

	Did You Know? — From Gambas ONE
	Shortcuts in Writing Code
	Expansions
	Help
	Declaring Variables
	Pausing and Looking at Variables
	Widen, Shorten and Move Things
	Many Random Numbers
	Deleting a Whole Line of Code
	Commenting and Uncommenting Lines of Code
	Non-Case-Sensitive Comparisons
	Appendix 2

	Functions Reference
	String Functions
	Numeric Functions
	Character Test Functions
	Random Numbers
	Time And Date
	Appendix 3

	Constants
	String constants
	Sort Order
	Alignment
	Appendix 4

	Operators
	Arithmetic
	Boolean
	String Operators
	Appendix 5

	Data Types and Conversions
	Data Types
	Conversions
	Appendix 6

	Formatting
	Formatting Numbers
	Formatting Dates
	Formatting Currency
	Appendix 7

	Operator Precedence
	Afterword

